7 research outputs found

    Role of Nitric Oxide in Shiga Toxin-2-Induced Premature Delivery of Dead Fetuses in Rats

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) infections could be one of the causes of fetal morbimortality in pregnant women. The main virulence factors of STEC are Shiga toxin type 1 and/or 2 (Stx1, Stx2). We previously reported that intraperitoneal (i.p.) injection of rats in the late stage of pregnancy with culture supernatant from recombinant E. coli expressing Stx2 and containing lipopolysaccharide (LPS) induces premature delivery of dead fetuses. It has been reported that LPS may combine with Stx2 to facilitate vascular injury, which may in turn lead to an overproduction of nitric oxide (NO). The aim of this study was to evaluate whether NO is involved in the effects of Stx2 on pregnancy. Pregnant rats were i.p. injected with culture supernatant from recombinant E. coli containing Stx2 and LPS (sStx2) on day 15 of gestation. In addition, some rats were injected with aminoguanidine (AG), an inducible isoform inhibitor of NO synthase (iNOS), 24 h before and 4 h after sStx2 injection. NO production was measured by NOS activity and iNOS expression by Western blot analysis. A significant increase in NO production and a high iNOS expression was observed in placental tissues from rats injected with sStx2 containing 0.7 ng and 2 ng Stx2/g body weight and killed 12 h after injection. AG caused a significant reduction of sStx2 effects on the feto-maternal unit, but did not prevent premature delivery. Placental tissues from rats treated with AG and sStx2 presented normal histology that was indistinguishable from the controls. Our results reveal that Stx2-induced placental damage and fetus mortality is mediated by an increase in NO production and that AG is able to completely reverse the Stx2 damages in placental tissues, but not to prevent premature delivery, thus suggesting other mechanisms not yet determined could be involved

    Host-pathogen interactions in streptococcal immune sequelae.

    Get PDF
    Otherwise uncomplicated infections with Streptococcus pyogenes can cause two insidious immune sequelae known as post-streptococcal glomerulonephritis (PSGN) and acute rheumatic fever (ARF). These diseases follow with a latency of a few weeks or months after primary infection and are responsible for high mortality and morbidity. PSGN has also been linked to infections with group C streptococci of the species S. equi ssp. zooepidemicus (SESZ). Moreover, there are some indications that infection with group C and G streptococci (GCGS) of the subspecies Streptococcus dysgalactiae ssp. equisimilis (SDSE) leads to ARF. Despite decades of research, the picture of the molecular pathogenesis of streptococcal immune sequelae resembles a jigsaw puzzle. Herein we try to put some of the puzzle bits together that have been collected till date
    corecore