3 research outputs found

    Entanglement and topology in RG flows across dimensions: caps, bridges and corners

    Get PDF
    We quantitatively address the following question: for a QFT which is partially compactified, so as to realize an RG flow from a D-dimensional CFT in the UV to a d-dimensional CFT in the IR, how does the entanglement entropy of a small spherical region probing the UV physics evolve as the size of the region grows to increasingly probe IR physics? This entails a generalization of spherical regions to setups without full Lorentz symmetry, and we study the associated entanglement entropies holographically. We find a tight interplay between the topology and geometry of the compact space and the evolution of the entanglement entropy, with universal transitions from ‘cap’ through ‘bridge’ and ‘corner’ phases, whose features reflect the details of the compact space. As concrete examples we discuss twisted compactifications of 4d N = 4 SYM on T2, S2 and hyperbolic Riemann surfaces

    Binary AdS black holes coupled to a bath in Type IIB

    Full text link
    We construct Type IIB string theory setups which, via double holography, realize two gravitational systems in separate AdS spaces which interact with each other and with a non-gravitational bath. We employ top-down string theory solutions with concrete field theory duals in the form of 4d N=4\mathcal N=4 SYM BCFTs and a first-principles notion of double holography. The setups are used to realize pairs of `near' and `far' black holes from the perspective of the bath, which exchange Hawking radiation with each other and radiate into the bath. We identify three phases for the entropy in the bath characterized as no island, partial island and full island, and discuss the entropy curves. The setups differ from the black hole binaries observed in gravitational wave experiments but may capture certain aspects.Comment: 28 pages, 10 figure

    cc-functions in Higher-derivative Flows Across Dimensions

    Full text link
    In the context of gravitational theories describing renormalization group flows across dimensions via AdS/CFT, we study the role of higher-derivative corrections to Einstein gravity. We use the Null Energy Condition to derive monotonicity properties of candidate holographic central charges formed by combinations of metric functions. We also implement an entropic approach to the characterization of the four-derivative flows using the Jacobson-Myers functional and demonstrate, under reasonable conditions, monotonicity of certain terms in the entanglement entropy via the appropriate generalization of the Ryu-Takayanagi prescription. In particular, we show that any flow from a higher dimensional theory to a holographic CFT2_2 satisfies a type of monotonicity. We also uncover direct relations between NEC-motivated and entropic central charges.Comment: 36 page
    corecore