8 research outputs found
A Comparison of Auroral Oval Proxies With the Boundaries of the Auroral Electrojets
The boundaries of the auroral oval and auroral electrojets are an important source of information for understanding the coupling between the solar wind and the near-earth plasma environment. Of these two types of boundaries the auroral electrojet boundaries have received comparatively little attention, and even less attention has been given to the connection between the two. Here we introduce a technique for estimating the electrojet boundaries, and other properties such as total current and peak current, from 1-D latitudinal profiles of the eastward component of equivalent current sheet density. We apply this technique to a preexisting database of such currents along the 105° magnetic meridian, estimated using ground-based magnetometers, producing a total of 11 years of 1-min resolution electrojet boundaries during the period 2000–2020. Using statistics and conjunction events we compare our electrojet boundary data set with an existing electrojet boundary data set, based on Swarm satellite measurements, and auroral oval proxies based on particle precipitation and field-aligned currents. This allows us to validate our data set and investigate the feasibility of an auroral oval proxy based on electrojet boundaries. Through this investigation we find the proton precipitation auroral oval is a closer match with the electrojet boundaries. However, the bimodal nature of the electrojet boundaries as we approach the noon and midnight discontinuities makes an average electrojet oval poorly defined. With this and the direct comparisons differing from the statistics, defining the proton auroral oval from electrojet boundaries across all local and universal times is challenging
On the formalization of multi-scale and multi-science processes for integrative biology
The aim of this work is to introduce the general concept of ‘Bond Graph’ (BG) techniques applied in the context of multi-physics and multi-scale processes. BG modelling has a natural place in these developments. BGs are inherently coherent as the relationships defined between the ‘elements’ of the graph are strictly defined by causality rules and power (energy) conservation. BGs clearly show how power flows between components of the systems they represent. The ‘effort’ and ‘flow’ variables enable bidirectional information flow in the BG model. When the power level of a system is low, BGs degenerate into signal flow graphs in which information is mainly one-dimensional and power is minimal, i.e. they find a natural limitation when dealing with populations of individuals or purely kinetic models, as the concept of energy conservation in these systems is no longer relevant. The aim of this work is twofold: on the one hand, we will introduce the general concept of BG techniques applied in the context of multi-science and multi-scale models and, on the other hand, we will highlight some of the most promising features in the BG methodology by comparing with examples developed using well-established modelling techniques/software that could suggest developments or refinements to the current state-of-the-art tools, by providing a consistent framework from a structural and energetic point of view