3 research outputs found
Acoustic effects on nonlinear optical processes
We studied the effects of two types of ultrasonic waves, shear waves and longitudinal waves, using two nonlinear optical techniques, second-harmonic generation and hyper-Rayleigh scattering. Since shear waves hardly propagate in liquids, their influence on molecules at the interface between a surface and a liquid was studied using second-harmonic generation. Longitudinal waves propagate easily in solution, thus we used hyper-Rayleigh scattering to probe the ultrasonic effects on chromophores in solution. While we did not find shear waves to alter the second-harmonic generation from chromophores at the liquid/surface interface, the longitudinal waves caused effects comparable to our earlier observations. Longitudinal ultrasound caused a strong intensity modulation of the nonlinear optical signal according to a wave-pattern.ChemE/Catalysis Engineerin
Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response
Regioregular poly(3-hexylthiophene)s with chain lengths varying from 5 to 100 monomers are synthesized. Poly(3-hexylthiophene)s show in solution an unexpectedly significant second-order nonlinear optical response. The increase in transition dipole moment upon oligomerisation causes the significant second-order nonlinear optical response.Chemical EngineeringApplied Science
Ultrasound-Mediated Drug Delivery With a Clinical Ultrasound System: In Vitro Evaluation
Chemotherapy efficacy is often reduced by insufficient drug uptake in tumor cells. The combination of ultrasound and microbubbles (USMB) has been shown to improve drug delivery and to enhance the efficacy of several drugs in vitro and in vivo, through effects collectively known as sonopermeation. However, clinical translation of USMB therapy is hampered by the large variety of (non-clinical) US set-ups and US parameters that are used in these studies, which are not easily translated to clinical practice. In order to facilitate clinical translation, the aim of this study was to prove that USMB therapy using a clinical ultrasound system (Philips iU22) in combination with clinically approved microbubbles (SonoVue) leads to efficient in vitro sonopermeation. To this end, we measured the efficacy of USMB therapy for different US probes (S5-1, C5-1 and C9-4) and US parameters in FaDu cells. The US probe with the lowest central frequency (i.e. 1.6Â MHz for S5-1) showed the highest USMB-induced intracellular uptake of the fluorescent dye SYTOXâ„¢ Green (SG). These SG uptake levels were comparable to or even higher than those obtained with a custom-built US system with optimized US parameters. Moreover, USMB therapy with both the clinical and the custom-built US system increased the cytotoxicity of the hydrophilic drug bleomycin. Our results demonstrate that a clinical US system can be used to perform USMB therapy as efficiently as a single-element transducer set-up with optimized US parameters. Therefore, future trials could be based on these clinical US systems, including validated US parameters, in order to accelerate successful translation of USMB therapy.ImPhys/Medical Imagin