63 research outputs found

    Visual representation of National Institute of Allergy and Infectious Disease and Food Allergy and Anaphylaxis Network criteria for anaphylaxis

    Get PDF
    We present a user-friendly visual representation of The National Institute of Allergy and Infectious Disease and the Food Allergy and Anaphylaxis Network criteria so as to enhance recognition of anaphylaxis and active teaching and learning

    Cardioembolic but Not Other Stroke Subtypes Predict Mortality Independent of Stroke Severity at Presentation

    Get PDF
    Introduction. Etiology of acute ischemic stroke (AIS) is known to significantly influence management, prognosis, and risk of recurrence. Objective. To determine if ischemic stroke subtype based on TOAST criteria influences mortality. Methods. We conducted an observational study of a consecutive cohort of patients presenting with AIS to a single tertiary academic center. Results. The study population consisted of 500 patients who resided in the local county or the surrounding nine-county area. No patients were lost to followup. Two hundred and sixty one (52.2%) were male, and the mean age at presentation was 73.7 years (standard deviation, SD = 14.3). Subtypes were as follows: large artery atherosclerosis 97 (19.4%), cardioembolic 144 (28.8%), small vessel disease 75 (15%), other causes 19 (3.8%), and unknown 165 (33%). One hundred and sixty patients died: 69 within the first 30 days, 27 within 31–90 days, 29 within 91–365 days, and 35 after 1 year. Low 90-, 180-, and 360-day survival was seen in cardioembolic strokes (67.1%, 65.5%, and 58.2%, resp.), followed for cryptogenic strokes (78.0%, 75.3%, and 71.1%). Interestingly, when looking into the cryptogenic category, those with insufficient information to assign a stroke subtype had the lowest survival estimate (57.7% at 90 days, 56.1% at 180 days, and 51.2% at 1 year). Conclusion. Cardioembolic ischemic stroke subtype determined by TOAST criteria predicts long-term mortality, even after adjusting for age and stroke severity

    Structure-Based Stabilization of HIV-1 gp120 Enhances Humoral Immune Responses to the Induced Co-Receptor Binding Site

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions) into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region

    Custom Integrated Circuits

    Get PDF
    Contains reports on nine research projects.Analog Devices, Inc.International Business Machines CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001U.S. Air Force - Office of Scientific Research Contract AFOSR 86-0164BDuPont CorporationNational Science Foundation Grant MIP 88-14612U.S. Navy - Office of Naval Research Contract N00014-87-K-0825American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876
    corecore