65 research outputs found
Multidetector CT cystography for imaging colovesical fistulas and iatrogenic bladder leaks
Multidetector computed tomography (MDCT) cystography currently represents the modality of choice to image the urinary bladder in traumatized patients. In this review we present our experience with MDCT cystography applications outside the trauma setting, particularly for diagnosing bladder fistulas and leaks. A detailed explanation is provided concerning exam preparation, acquisition technique, image reconstruction and interpretation. Colovesical fistulas most commonly occur as a complication of sigmoid diverticular disease, and often remain occult after extensive diagnostic work-up including cystoscopy and contrast-enhanced CT. We consistently achieved accurate preoperative visualization of colovesical fistulas using MDCT cystography. Urinary leaks and injuries represent a non-negligible occurrence after pelvic surgery, particularly obstetric and gynaecological procedures: in our experience MDCT cystography is useful to investigate iatrogenic bladder leaks or fistulas. In our opinion, MDCT cystography should be recommended as the first line modality for direct visualization or otherwise confident exclusion of both spontaneous enterovesical fistulas and bladder injuries following instrumentation procedures, obstetric or surgical interventions
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37Â MJ of fusion for 1.92Â MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
Recommended from our members
The Importance of Hyperspectral Soil Albedo Information for Improving Earth System Model Projections
Earth system models (ESMs) typically simplify the representation of land surface spectral albedo to two values, which correspond to the photosynthetically active radiation (PAR, 400â700 nm) and the near infrared (NIR, 700â2,500 nm) spectral bands. However, the availability of hyperspectral observations now allows for a more direct retrieval of ecological parameters and reduction of uncertainty in surface reflectance. To investigate sensitivity and quantify biases of incorporating hyperspectral albedo information into ESMs, we examine how shortwave soil albedo affects surface radiative forcing and simulations of the carbon and water cycles. Results reveal that the use of two broadband values to represent soil albedo can introduce systematic radiative-forcing differences compared to a hyperspectral representation. Specifically, we estimate soil albedo biases of ±0.2 over desert areas, which can result in spectrally integrated radiative forcing divergences of up to 30 W mâ2, primarily due to discrepancies in the blue (404â504 nm) and far-red (702â747 nm) regions. Furthermore, coupled land-atmosphere simulations indicate a significant difference in net solar flux at the top of the atmosphere (>3.3 W mâ2), which can impact global energy fluxes, rainfall, temperature, and photosynthesis. Finally, simulations show that considering the hyperspectrally resolved soil reflectance leads to increased maximum daily temperatures under current and future CO2 concentrations
- âŠ