29 research outputs found

    Advanced HVDC systems for renewable energy integration and power transmission: modelling and control for power system transient stability

    Get PDF
    The first part is concerned with dynamic aggregated modelling of large offshore wind farms and their integration into power systems via VSC-HVDC links. The dynamic aggregated modelling of offshore wind farms including WT-DFIGs and WT-PMSGs are proposed to achieve effective representations of wind farms in terms of computational time and simulation accuracy for transient stability analysis. Modelling and control of VSC-HVDC systems for integration of offshore wind farms are investigated. Comparisons of two control schemes of rectifier-side converter are carried out to evaluate their dynamic performance for integration of these offshore wind farms in terms of transient stability. The second part is to address the advanced transmission systems with innovative HVDC configurations. Feasibility studies of updated schemes of monoplolar CSC-HVDC link with support of monopolar VSC-HVDC link as the hybrid bipolar CSC/I{VDC system is carried out to deal with two key issues of CSC-HVDC. Small-signal modelling of MTDC grids is investigated and parameter optimisation of PI controller of converters in MTDC grids is carried out using PSO method based on small-signal models of the system at multiple operating points to obtain optimised parameters of PI controllers to improve dynamic performance of MTDC grids at multiple operating points

    Development of an advanced LCC-HVDC model for transmission system

    No full text

    Mitomycin C Induces Apoptosis in Rheumatoid Arthritis Fibroblast-Like Synoviocytes via a Mitochondrial-Mediated Pathway

    No full text
    Background/Aims: Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease characterised by prominent synoviocyte hyperplasia and a potential imbalance between the growth and death of fibroblast-like synoviocytes (FLS). Mitomycin C (MMC) has previously been demonstrated to inhibit fibroblast proliferation and to induce fibroblast apoptosis. However, the effects of MMC on the proliferation and apoptosis of human RA FLS and the potential mechanisms underlying its effects remain unknown. Methods: Cell viability was determined using the Cell Counting Kit-8 assay. Apoptotic cell death was analysed via Annexin V-FITC/PI double staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling. The production of intracellular reactive oxygen species (ROS) was assessed via flow cytometry, and the changes in mitochondrial membrane potential (ΔΨm) were visualized based on JC-1 staining via fluorescence microscopy. The expression of apoptosis-related proteins was determined via Western blot. Results: Treatment with MMC significantly reduced cell viability and induced apoptosis in RA FLS. Furthermore, MMC exposure was found to stimulate the production of ROS and to disrupt the ΔΨm compared to the control treatment. Moreover, MMC increased the release of mitochondrial cytochrome c, the ratio of Bax/Bcl-2, the activation of caspase-9 and caspase-3, and the subsequent cleavage of poly(ADP-ribose) polymerase. Conclusion: Our findings suggest that MMC inhibits cell proliferation and induces apoptosis in RA FLS, and the mechanism underlying this MMC-induced apoptosis may involve a mitochondrial signalling pathway

    Effects of heat treatment on microstructure and mechanical properties of squeeze casting AlSi9Mg alloy flywheel housings formed with local supplementary pressure

    No full text
    Targeted squeeze casting components of the thick-walled locations with local supplementary pressure (LSP) can effectively realize the local forced shrinkage, which is very significant for the elimination of shrinkage defects. In this paper, the effects of solid solution temperature, solid solution time, aging temperature and aging time on AlSi9Mg aluminum alloy flywheel housing with large wall thickness difference and complex structure formed with LSP were investigated. The results showed that the LSP effectively refined the microstructure and accelerated the spheroidization process of eutectic silicon, which reduced the heat treatment holding time significantly. The twinning growth of silicon particles effectively hindered the dislocation motion, relieved the stress concentration, and improved the strength. The fishbone-like AlSiMnFe phase were passivated after heat treatment. Heat treatment can enhance the plasticity by breaking and spheroidizing the coarse needle-like eutectic silicon, and enhance the strength by refining and homogenizing the β'' phase precipitated in the alloy. The optimum heat treatment parameters are solid solution at 540 °C for 210 min and aging at 175 °C for 480 min. Under the optimum heat treatment condition, the ultimate tensile strength, yield strength and elongation for the position with LSP reached 306.1 MPa, 237.5 MPa, 13.29 %
    corecore