4 research outputs found

    Calix[4]arene-Based Sensitizers for Host-Guest Supramolecular Dyads for Solar Energy Conversion in Photoelectrochemical Cells

    Get PDF
    The photogeneration of electricity and solar fuels by solar irradiation in photoelectrochemical cells is one of the sectors with the highest growth potential in the decarbonised society. However, the use of different components, in particular photosensitizers and catalysts, can present problems of charge transfer efficiency at the interface, leading to lower final efficiencies. In this work we present novel integrated photosensitizer-catalyst dyads based on robust and, at the same time, flexible host-guest non-covalent interactions through the use of calix[4]arene cavities. Current photogeneration in photoelectrochemical cells showed twice greater efficiency in the integrated calixarene-based host-guest dyads compared to the traditional architecture based on the separate photosensitizer-catalyst pair. Molecular dynamics studies have shown that the enhanced performance originates from an optimization of the distances between the centres of the photosensitizer, catalyst and semiconductor involved in the charge transfer processes, thus allowing a higher final efficiency of the charge photogeneration process

    Multibranched Calix[4]arene-Based Sensitizers for Efficient Photocatalytic Hydrogen Production

    Get PDF
    In the field of direct production of hydrogen from solar energy and water, photocatalytic methods hold great potential especially when metal-free molecular components are preferred. In this work, we have developed a new class of calix[4]arene-based molecular photosensitizers to be used as antenna systems in the photocatalytic production of hydrogen. The structure of the dyes has a typical donor-Ï€-acceptor molecular architecture where a calix[4]arene scaffold is used as an embedded donor. The new materials have been fully characterized in their optical, electrochemical, and photocatalytic properties. The properties conferred by the calix[4]arene donor afforded twice larger performances compared to the corresponding linear system though showing similar quantitative optical properties. The new molecular design paves the way to a new strategy for photocatalytic hydrogen production where the calix[4]arene scaffold can afford more efficient systems and can offer the potential for host-guest supramolecular effects

    Dye–catalyst dyads for photoelectrochemical water oxidation based on metal-free sensitizers

    No full text
    Dye-Sensitized Photoelectrochemical Cells (DS-PECs) have been emerging as promising devices for efficient solar-induced water splitting. In DS-PECs, dyes and catalysts for water oxidation and/or reduction are typically two separate components, thus limiting charge transfer efficiency. A small number of organometallic dyes have been integrated with a catalyst to form an integrated dye–catalyst dyad for photoanodes, but until now no dyads based on metal-free organic dyes have been reported for photoanodes. We herein report the first example of dyad-sensitized photoanodes in DS-PEC water splitting based on metal-free organic dyes and a Ru catalyst. The di-branched donor–π–acceptor dyes carry a donor carbazole moiety which has been functionalized with two different terminal pyridyl ligands in order to coordinate a benchmark Ru complex as a water oxidation catalyst, affording water oxidation dyads. The two dyads have been fully characterized in their optical and electrochemical properties, and XPS has been used to confirm the presence of the catalyst bonded to the dye anchored to the semiconductor anode. The two dyads have been investigated in DS-PEC, showing an excellent faradaic efficiency (88% average across all cells, with a best cell efficiency of 95%), thus triggering new perspectives for the design of efficient molecular dyads based on metal-free dyes for DS-PEC water splitting

    Multibranched Calix[4]arene-Based Sensitizers for Efficient Photocatalytic Hydrogen Production

    Get PDF
    In the field of direct production of hydrogen from solar energy and water, photocatalytic methods hold great potential especially when metal-free molecular components are preferred. In this work, we have developed a new class of calix[4]arene-based molecular photosensitizers to be used as antenna systems in the photocatalytic production of hydrogen. The structure of the dyes has a typical donor-\u3c0-acceptor molecular architecture where a calix[4]arene scaffold is used as an embedded donor. The new materials have been fully characterized in their optical, electrochemical, and photocatalytic properties. The properties conferred by the calix[4]arene donor afforded twice larger performances compared to the corresponding linear system though showing similar quantitative optical properties. The new molecular design paves the way to a new strategy for photocatalytic hydrogen production where the calix[4]arene scaffold can afford more efficient systems and can offer the potential for host-guest supramolecular effects
    corecore