8 research outputs found

    Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells

    Get PDF
    Notch1 regulates neural stem cell (NSC) number during development, but its role in adult neurogenesis is unclear. We generated nestin-CreER(T2)/R26R-YFP/Notch1(loxP/loxP) [Notch1inducible knock-out (iKO)] mice to allow tamoxifen (TAM)-inducible elimination of Notch1 and concomitant expression of yellow fluorescent protein (YFP) in nestin-expressing Type-1 NSCs and their progeny in the adult hippocampal subgranular zone (SGZ). Consistent with previous research, YFP+ cells in all stages of neurogenesis were evident in the subgranular zone (SGZ) of wild-type (WT) mice (nestin-CreER(T2)/R26R-YFP/Notch1(w/w)) after tamoxifen (post-TAM), producing adult-generated YFP+ dentate gyrus neurons. Compared with WT littermates, Notch1 iKO mice had similar numbers of total SGZ YFP+ cells 13 and 30 d post-TAM but had significantly fewer SGZ YFP+ cells 60 and 90 d post-TAM. Significantly fewer YFP+ Type-1 NSCs and transiently amplifying progenitors (TAPs) resulted in generation of fewer YFP+ granule neurons in Notch1 iKO mice. Strikingly, 30 d of running rescued this deficit, as the total YFP+ cell number in Notch iKO mice was equivalent to WT levels. This was even more notable given the persistent deficits in the Type-1 NSC and TAP reservoirs. Our data show that Notch1 signaling is required to maintain a reservoir of undifferentiated cells and ensure continuity of adult hippocampal neurogenesis, but that alternative Notch- and Type-1 NSC-independent pathways compensate in response to physical activity. These data shed light on the complex relationship between Type-1 NSCs, adult neurogenesis, the neurogenic niche, and environmental stimuli

    In vivocontribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis

    No full text
    Radial gliaā€like cells (RGCs) are the hypothesized source of adult hippocampal neurogenesis. However, the current model of hippocampal neurogenesis does not fully incorporate the in vivo heterogeneity of RGCs. In order to better understand the contribution of different RGC subtypes to adult hippocampal neurogenesis, we employed widely used transgenic lines (Nestinā€CreERT2 and GLAST::CreERT2 mice) to explore how RGCs contribute to neurogenesis under basal conditions and after stimulation and depletion of neural progenitor cells. We first used these inducible fateā€tracking transgenic lines to define the similarities and differences in the contribution of nestinā€ and GLASTā€lineage cells to basal longā€term hippocampal neurogenesis. We then explored the ability of nestinā€ and GLASTā€lineage RGCs to contribute to neurogenesis after experimental manipulations that either ablate neurogenesis (i.c.v. application of the antiā€mitotic AraC, cytosineā€Ī²ā€Dā€arabinofuranoside) or stimulate neurogenesis (wheel running). Interestingly, in both ablation and stimulation experiments, labeled RGCs in GLAST::CreERT2 mice appear to contribute to neurogenesis, whereas RGCs in Nestinā€CreERT2 mice do not. Finally, using NestinGFP reporter mice, we expanded on previous research by showing that not all RGCs in the adult dentate gyrus subgranular zone express nestin, and therefore RGCs are antigenically heterogeneous. These findings are important for the field, as they allow appropriately conservative interpretation of existing and future data that emerge from these inducible transgenic lines. These findings also raise important questions about the differences between transgenic driver lines, the heterogeneity of RGCs, and the potential differences in progenitor cell behavior between transgenic lines. As these findings highlight the possible differences in the contribution of cells to longā€term neurogenesis in vivo, they indicate that the current models of hippocampal neurogenesis should be modified to include RGC lineage heterogeneit

    56Fe particle exposure results in a long-lasting increase in a cellular index of genomic instability and transiently suppresses adult hippocampal neurogenesis in vivo

    No full text
    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreER(T2)/R26R:YFP mice, respectively). Mice were subjected to (56)Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24h), intermediate (7d), and/or long time points (2ā€“3mo) post-irradiation. (56)Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, (56)Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. (56)Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, (56)Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, (56)Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support the regenerative capacity of the adult SGZ after HZE particle exposure and encourage additional inquiry into the relationship between radial glia stem cells and cognitive function after HZE particle exposure
    corecore