9 research outputs found

    Activation of BKCa Channels in Zoledronic Acid-Induced Apoptosis of MDA-MB-231 Breast Cancer Cells

    Get PDF
    BACKGROUND: Zoledronic acid, one of the most potent nitrogen-containing biphosphonates, has been demonstrated to have direct anti-tumor and anti-metastatic properties in breast cancer in vitro and in vivo. In particular, tumor-cell apoptosis has been recognized to play an important role in the treatment of metastatic breast cancer with zoledronic acid. However, the precise mechanisms remain less clear. In the present study, we investigated the specific role of large conductance Ca(2+)-activated potassium (BK(Ca)) channel in zoledronic acid-induced apoptosis of estrogen receptor (ER)-negative MDA-MB-231 breast cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: The action of zoledronic acid on BK(Ca) channel was investigated by whole-cell and cell-attached patch clamp techniques. Cell apoptosis was assessed with immunocytochemistry, analysis of fragmented DNA by agarose gel electrophoresis, and flow cytometry assays. Cell proliferation was investigated by MTT test and immunocytochemistry. In addition, such findings were further confirmed with human embryonic kidney 293 (HEK293) cells which were transfected with functional BK(Ca) α-subunit (hSloα). Our results clearly indicated that zoledronic acid directly increased the activities of BK(Ca) channels, and then activation of BK(Ca) channel by zoledronic acid contributed to induce apoptosis in MDA-MB-231 cells. The possible mechanisms were associated with the elevated level of intracellular Ca(2+) and a concomitant depolarization of mitochondrial membrane potential (Δψm) in MDA-MB-231 cells. CONCLUSIONS: Activation of BK(Ca) channel was here shown to be a novel molecular pathway involved in zoledronic acid-induced apoptosis of MDA-MB-231 cells in vitro

    Peripheral nerve atrophy together with higher CSF progranulin indicate axonal damage in ALS

    No full text
    Introduction: We aimed to investigate whether sonographic peripheral cross-sectional nerve area (CSA) and progranulin (PGRN), a neuritic growth factor, are related to each other and whether they interact to predict clinical and paraclinical measures in amyotrophic lateral sclerosis (ALS). Methods: We included 55 ALS patients who had forearm median and ulnar nerve CSA, cerebrospinal fluid (CSF) PGRN, and serum PGRN measures available. CSF PGRN was normalized against the CSF / serum albumin ratio (Q). Using age, sex, height, and weight adjusted general linear models, we examined CSA × CSF PGRN interaction effects on various measures. Results: There was a medium-effect size inverse relationship between CSA and CSF PGRN, but not between CSA and serum PGRN. Lower CSA values together with higher CSF PGRN levels were linked to smaller motor amplitudes. Discussion: In ALS, the constellation of peripheral nerve atrophy together with higher CSF PGRN levels indicates pronounced axonal damage. Muscle Nerve 57: 273–278, 2018

    Significance of CSF NfL and tau in ALS

    No full text
    Cerebrospinal fluid (CSF) neurofilament light chain (NfL) has emerged as putative diagnostic biomarker in amyotrophic lateral sclerosis (ALS), but it remains a matter of debate, whether CSF total tau (ttau), tau phosphorylated at threonine 181 (ptau) and the ptau/ttau ratio could serve as diagnostic biomarker in ALS as well. Moreover, the relationship between CSF NfL and tau measures to further axonal and (neuro)degeneration markers still needs to be elucidated. Our analysis included 89 ALS patients [median (range) age 63 (33-83) years, 61% male, disease duration 10 (0.2-190) months] and 33 age- and sex-matched disease controls [60 (32-76), 49%]. NfL was higher and the ptau/ttau ratio was lower in ALS compared to controls [8343 (1795-35,945) pg/ml vs. 1193 (612-2616), H(1) = 70.8, p < 0.001; mean (SD) 0.17 (0.04) vs. 0.2 (0.03), F(1) = 14.3, p < 0.001], as well as in upper motor neuron dominant (UMND, n = 10) compared to classic (n = 46) or lower motor neuron dominant ALS [n = 31; for NfL: 16,076 (7447-35,945) vs. 8205 (2651-35,138) vs. 8057 (1795-34,951)], Z ≥ 2.5, p ≤ 0.01; for the ptau/ttau ratio: [0.13 (0.04) vs. 0.17 (0.04) vs. 0.18 (0.03), p ≤ 0.02]. In ALS, NfL and the ptau/ttau ratio were related to corticospinal tract (CST) fractional anisotropy (FA) and radial diffusivity (ROI-based approach and whole-brain voxelwise analysis). Factor analysis of mixed data revealed a co-variance pattern between NfL (factor load - 0.6), the ptau/ttau ratio (0.7), CST FA (0.8) and UMND ALS phenotype (- 2.8). NfL did not relate to any further neuroaxonal injury marker (brain volumes, precentral gyrus thickness, peripheral motor amplitudes, sonographic cross-sectional nerve area), but a lower ptau/ttau ratio was associated with whole-brain gray matter atrophy and widespread white matter integrity loss. Higher NfL baseline levels were associated with greater UMN disease burden, more rapid disease progression, a twofold to threefold greater hazard of death and shorter survival times. The findings that higher CSF NfL levels and a reduced ptau/ttau ratio are more associated with clinical UMN involvement and with reduced CST FA offer strong converging evidence that both are markers of central motor degeneration. Furthermore, NfL is a marker of poor prognosis, while a low ptau/ttau ratio indicates extramotor pathology in ALS

    Mitochondrial ion channels as oncological targets

    No full text
    corecore