62 research outputs found

    A longitudinal study of accommodative changes in biometry during incipient presbyopia

    Get PDF
    PURPOSE: To profile accommodative biometric changes longitudinally and to determine the influence of age-related ocular structural changes on the accommodative response prior to the onset of presbyopia. METHODS: Twenty participants (aged 34-41 years) were reviewed at six-monthly intervals over two and a half years. At each visit, ocular biometry was measured with the LenStar biometer (www.Haag-Streit.com) in response to 0.00, 3.00 and 4.50 D stimuli. Accommodative responses were measured by the WAM 5500 Auto Ref/Keratometer (www.grandseiko.com). RESULTS: During accommodation, anterior chamber depth reduced (F = 29, p < 0.001), whereas crystalline lens thickness (F = 39, p < 0.001) and axial length (F = 5.4, p = 0.009) increased. The accommodative response (F = 5.5, p = 0.001) and the change in anterior chamber depth (F = 3.1, p = 0.039), crystalline lens thickness (F = 3.0, p = 0.042) and axial length (F = 2.5, p = 0.038) in response to the 4.50 D accommodative target reduced after 2.5 years. However, the change in anterior chamber depth (F = 2.2, p = 0.097), crystalline lens thickness (F = 1.7, p = 0.18) and axial length (F = 1.0, p = 0.40) per dioptre of accommodation exerted remained invariant after 2.5 years. The increase in disaccommodated crystalline lens thickness with age was not significantly associated with the reduction in accommodative response (R = 0.32, p = 0.17). CONCLUSION: Despite significant age-related structural changes in disaccommodated biometry, the change in biometry per dioptre of accommodation exerted remained invariant with age. The present study supports the Helmholtz theory of accommodation and suggests an increase in lenticular stiffness is primarily responsible for the onset of presbyopia

    A program to analyse optical coherence tomography images of the ciliary muscle

    Get PDF
    Purpose: To describe and validate bespoke software designed to extract morphometric data from ciliary muscle Visante Anterior Segment Optical Coherence Tomography (AS-OCT) images. Method: Initially, to ensure the software was capable of appropriately applying tiered refractive index corrections and accurately measuring orthogonal and oblique parameters, 5 sets of custom-made rigid gas-permeable lenses aligned to simulate the sclera and ciliary muscle were imaged by the Visante AS-OCT and were analysed by the software. Human temporal ciliary muscle data from 50 participants extracted via the internal Visante AS-OCT caliper method and the software were compared. The repeatability of the software was also investigated by imaging the temporal ciliary muscle of 10 participants on 2 occasions. Results: The mean difference between the software and the absolute thickness measurements of the rigid gas-permeable lenses were not statistically significantly different from 0 (t = -1.458, p = 0.151). Good correspondence was observed between human ciliary muscle measurements obtained by the software and the internal Visante AS-OCT calipers (maximum thickness t = -0.864, p = 0.392, total length t = 0.860, p = 0.394). The software extracted highly repeatable ciliary muscle measurements (variability ≀6% of mean value). Conclusion: The bespoke software is capable of extracting accurate and repeatable ciliary muscle measurements and is suitable for analysing large data sets

    Does transient increase in axial length during accommodation attenuate with age?

    Get PDF
    Background: The aim was to profile transient accommodative axial length (AXL) changes from early adulthood to advanced presbyopia and to determine whether any differences exist between the responses of myopic and emmetropic individuals. Methods: Ocular biometry was measured by the LenStar biometer (Haag-Streit, Switzerland) in response to 0.00, 3.00 and 4.50 D accommodative stimuli in 35 emmetropes and 37 myopes, aged 18 to 60 years. All results were corrected to reduce errors arising from the increase in crystalline lens thickness with accommodation. Accommodative responses were measured sequentially by the WAM 5500 Auto Ref/Keratometer (Grand Seiko, Japan). Results: AXL increased significantly with accommodation (p<0.001), with a mean corrected AXL elongation of 2 ± 18 ”m and 8 ± 16 ”m observed at 3.00 D and 4.50 D, respectively. The magnitude of accommodative AXL change was not dependent on refractive error classification (p=0.959), however a significant reduction in the magnitude and variance of AXL change was evident after 43-44 years of age (p<0.002). Conclusion: The negative association between transient AXL elongation and age, in combination with reduced variance of data after age 43-44 years, is consistent with a significant increase in posterior ocular rigidity, which may be influential in the development of presbyopia

    Refraction during incipient presbyopia:the Aston Longitudinal Assessment of Presbyopia (ALAP) study

    Get PDF
    Purpose: To investigate non-cycloplegic changes in refractive error prior to the onset of presbyopia. Methods: The Aston Longitudinal Assessment of Presbyopia (ALAP) study is a prospective 2.5 year longitudinal study, measuring objective refractive error using a binocular open-field WAM-5500 autorefractor at 6-month intervals in participants aged between 33 and 45 years. Results: From the 58 participants recruited, 51 participants (88%) completed the final visit. At baseline, 21 participants were myopic (MSE -3.25 ± 2.28 DS; baseline age 38.6 ± 3.1 years) and 30 were emmetropic (MSE −0.17 ± 0.32 DS; baseline age 39.0 ± 2.9 years). After 2.5 years, 10% of the myopic group experienced a hypermetropic shift (≄0.50 D), 5% a myopic shift (≄0.50 D) and 85% had no significant change in refraction (<0.50 D). From the emmetropic group, 10% experienced a hypermetropic shift (≄0.50 D), 3% a myopic shift (≄0.50 D) and 87% had no significant change in refraction (<0.50 D). In terms of astigmatism vectors, other than J45 (p < 0.001), all measures remained invariant over the study period. Conclusion: The incidence of a myopic shift in refraction during incipient presbyopia does not appear to be as large as previously indicated by retrospective research. The changes in axis indicate ocular astigmatism tends towards the against-the-rule direction with age. The structural origin(s) of the reported myopic shift in refraction during incipient presbyopia warrants further investigation

    Prediction of chronic disability in work-related musculoskeletal disorders: a prospective, population-based study

    Get PDF
    BACKGROUND: Disability associated with work-related musculoskeletal disorders is an increasingly serious societal problem. Although most injured workers return quickly to work, a substantial number do not. The costs of chronic disability to the injured worker, his or her family, employers, and society are enormous. A means of accurate early identification of injured workers at risk for chronic disability could enable these individuals to be targeted for early intervention to promote return to work and normal functioning. The purpose of this study is to develop statistical models that accurately predict chronic work disability from data obtained from administrative databases and worker interviews soon after a work injury. Based on these models, we will develop a brief instrument that could be administered in medical or workers' compensation settings to screen injured workers for chronic disability risk. METHODS: This is a population-based, prospective study. The study population consists of workers who file claims for work-related back injuries or carpal tunnel syndrome (CTS) in Washington State. The Washington State Department of Labor and Industries claims database is reviewed weekly to identify workers with new claims for work-related back injuries and CTS, and these workers are telephoned and invited to participate. Workers who enroll complete a computer-assisted telephone interview at baseline and one year later. The baseline interview assesses sociodemographic, employment-related, biomedical/health care, legal, and psychosocial risk factors. The follow-up interview assesses pain, disability, and work status. The primary outcome is duration of work disability over the year after claim submission, as assessed by administrative data. Secondary outcomes include work disability status at one year, as assessed by both self-report and work disability compensation status (administrative records). A sample size of 1,800 workers with back injuries and 1,200 with CTS will provide adequate statistical power (0.96 for low back and 0.85 for CTS) to predict disability with an alpha of .05 (two-sided) and a hazard ratio of 1.2. Proportional hazards regression models will be constructed to determine the best combination of predictors of work disability duration at one year. Regression models will also be developed for the secondary outcomes

    Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND). a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension

    Get PDF
    Background: Although several disease-modifying treatments are available for relapsing multiple sclerosis, treatment effects have been more modest in progressive multiple sclerosis and have been observed particularly in actively relapsing subgroups or those with lesion activity on imaging. We sought to assess whether natalizumab slows disease progression in secondary progressive multiple sclerosis, independent of relapses. Methods: ASCEND was a phase 3, randomised, double-blind, placebo-controlled trial (part 1) with an optional 2 year open-label extension (part 2). Enrolled patients aged 18–58 years were natalizumab-naive and had secondary progressive multiple sclerosis for 2 years or more, disability progression unrelated to relapses in the previous year, and Expanded Disability Status Scale (EDSS) scores of 3·0–6·5. In part 1, patients from 163 sites in 17 countries were randomly assigned (1:1) to receive 300 mg intravenous natalizumab or placebo every 4 weeks for 2 years. Patients were stratified by site and by EDSS score (3·0–5·5 vs 6·0–6·5). Patients completing part 1 could enrol in part 2, in which all patients received natalizumab every 4 weeks until the end of the study. Throughout both parts, patients and staff were masked to the treatment received in part 1. The primary outcome in part 1 was the proportion of patients with sustained disability progression, assessed by one or more of three measures: the EDSS, Timed 25-Foot Walk (T25FW), and 9-Hole Peg Test (9HPT). The primary outcome in part 2 was the incidence of adverse events and serious adverse events. Efficacy and safety analyses were done in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT01416181. Findings: Between Sept 13, 2011, and July 16, 2015, 889 patients were randomly assigned (n=440 to the natalizumab group, n=449 to the placebo group). In part 1, 195 (44%) of 439 natalizumab-treated patients and 214 (48%) of 448 placebo-treated patients had confirmed disability progression (odds ratio [OR] 0·86; 95% CI 0·66–1·13; p=0·287). No treatment effect was observed on the EDSS (OR 1·06, 95% CI 0·74–1·53; nominal p=0·753) or the T25FW (0·98, 0·74–1·30; nominal p=0·914) components of the primary outcome. However, natalizumab treatment reduced 9HPT progression (OR 0·56, 95% CI 0·40–0·80; nominal p=0·001). In part 1, 100 (22%) placebo-treated and 90 (20%) natalizumab-treated patients had serious adverse events. In part 2, 291 natalizumab-continuing patients and 274 natalizumab-naive patients received natalizumab (median follow-up 160 weeks [range 108–221]). Serious adverse events occurred in 39 (13%) patients continuing natalizumab and in 24 (9%) patients initiating natalizumab. Two deaths occurred in part 1, neither of which was considered related to study treatment. No progressive multifocal leukoencephalopathy occurred. Interpretation: Natalizumab treatment for secondary progressive multiple sclerosis did not reduce progression on the primary multicomponent disability endpoint in part 1, but it did reduce progression on its upper-limb component. Longer-term trials are needed to assess whether treatment of secondary progressive multiple sclerosis might produce benefits on additional disability components. Funding: Biogen

    Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders.

    Get PDF
    Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders

    Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders

    Get PDF
    Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore