80 research outputs found

    Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome

    Get PDF
    The majority of the human genome is transcribed but not translated, giving rise to noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs, >200 nt) that perform a wide range of functions in gene regulation. The Fragile X mental retardation 1 (FMR1) gene is a microsatellite locus that in the general population contains <55 CGG repeats in its 5′-untranslated region. Expansion of this repeat region to a size of 55-200 CGG repeats, known as premutation, is associated with Fragile X tremor and ataxia syndrome (FXTAS). Further expansion beyond 200 CGG repeats, or full mutation, leads to FMR1 gene silencing and results in Fragile X syndrome (FXS). Using a novel technology called “Deep-RACE”, which combines rapid amplification of cDNA ends (RACE) with next generation sequencing, we systematically interrogated the FMR1 gene locus for the occurrence of novel lncRNAs. We discovered two transcripts, FMR5 and FMR6. FMR5 is a sense lncRNA transcribed upstream of the FMR1 promoter, whereas FMR6 is an antisense transcript overlapping the 3′ region of FMR1. FMR5 was expressed in several human brain regions from unaffected individuals and from full and premutation patients. FMR6 was silenced in full mutation and, unexpectedly, in premutation carriers suggesting abnormal transcription and/or chromatin remodeling prior to transition to the full mutation. These lncRNAs may thus be useful as biomarkers, allowing for early detection and therapeutic intervention in FXS and FXTAS. Finally we show that FMR5 and FMR6 are expressed in peripheral blood leukocytes and propose future studies that correlate lncRNA expression with clinical outcomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00439-013-1356-6) contains supplementary material, which is available to authorized users

    Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7

    Get PDF
    PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies

    Patient management problem-preferred responses

    No full text
    Following are the preferred responses for the Patient Management Problem in this CONTINUUM issue. The case, questions, and answer options are repeated, and the preferred response appears in bold print, followed by an explanation and a reference with which you may seek more specific information. You are encouraged to review the responses and explanations carefully to evaluate your general understanding of the material. The comment and references included with each question are intended to encourage independent study

    Klinefelter Syndrome in Association with Tetralogy of Fallot and Congenital Diaphragmatic Hernia

    No full text
    Klinefelter syndrome (KS) is the most common sex chromosomal aneuploidy in males. Major cardiovascular and diaphragmatic anomalies are uncommon in this syndrome. Here we report an infant with KS who had tetralogy of Fallot and congenital diaphragmatic hernia, all of which were identified prenatally and managed successfully after birth. Microarray analysis did not reveal any deletions or duplications other than the additional X-chromosome, to account for the additional abnormalities in this infant. To the authors' knowledge, this is the first such report of major cardiac and diaphragm anomaly occurring together, in an infant with KS
    corecore