33 research outputs found

    The Unexpected Role of A\u3b21-42 Monomers in the Pathogenesis of Alzheimer's Disease

    Get PDF
    Amyloid- (A) has been proposed as a biomarker and a drug target for the therapy of Alzheimer\u2019s disease (AD). The neurotoxic entity and relevance of each conformational form of A to AD pathology is still under debate; A oligomers are considered the major killer form of the peptide whereas monomers have been proposed to be involved in physiological process. Here we reviewed some different effects mediated by monomers and oligomers on mechanisms involved in AD pathogenesis such as autophagy and tau aggregation. Data reported in this review demonstrate that A monomers could have a major role in sustaining the pathogenesis of AD and that AD therapy should be focused not only in the removal of oligomers but also of monomers

    The Decrease of Uch-L1 Activity Is a Common Mechanism Responsible for Aβ 42 Accumulation in Alzheimer’s and Vascular Disease

    Get PDF
    Alzheimer’s disease (AD) is a multifactorial pathology causing common brain spectrum disorders in affected patients. These mixed neurological disorders not only include structural AD brain changes but also cerebrovascular lesions. The main aim of the present issue is to find the factors shared by the two pathologies. The decrease of ubiquitin C-terminal hydrolase L1 (Uch-L1), a major neuronal enzyme involved in the elimination of misfolded proteins, was observed in ischemic injury as well as in AD, but its role in the pathogenesis of AD is far to be clear. In this study we demonstrated that Uch-L1 inhibition induces BACE1 up-regulation and increases neuronal and apoptotic cell death in control as well as in transgenic AD mouse model subjected to Bengal Rose, a light-sensitive dye inducing that induces a cortical infarction through photo-activation. Under the same conditions we also found a significant activation of NF-κB. Thus, the restoration of Uch-L1 was able to completely prevent both the increase in BACE1 protein levels and the amount of cell death. Our data suggest that the Uch-L1-mediated BACE1 up-regulation could be an important mechanism responsible for Aβ peptides accumulation in vascular injury and indicate that the modulation of the activity of this enzyme could provide new therapeutic strategies in AD

    Up-regulation of β-amyloidogenesis in neuron-like human cells by both 24- and 27-hydroxycholesterol: protective effect of N-acetyl-cysteine.

    Get PDF
    An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer's disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27-hydroxycholesterol (27-OH) and 24-hydroxycholesterol (24-OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK-N-BE human neuroblastoma cells with patho-physiologically relevant amounts of 27-OH and 24-OH showed that both oxysterols induce a net synthesis of A1-42 by up-regulating expression levels of amyloid precursor protein and -secretase, as well as the -secretase activity. Interestingly, cell pretreatment with N-acetyl-cysteine (NAC) fully prevented the enhancement of -amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholesterol oxidative metabolism to an excessive -amyloidogenesis and point to NAC as an efficient inhibitor of oxysterols-induced A toxic peptide accumulation in the brain.An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer's disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27-hydroxycholesterol (27-OH) and 24-hydroxycholesterol (24-OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK-N-BE human neuroblastoma cells with patho-physiologically relevant amounts of 27-OH and 24-OH showed that both oxysterols induce a net synthesis of Aβ1-42 by up-regulating expression levels of amyloid precursor protein and β-secretase, as well as the β-secretase activity. Interestingly, cell pretreatment with N-acetyl-cysteine (NAC) fully prevented the enhancement of β-amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholester

    A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    Get PDF
    J. Kaprio, A. Palotie, A. Raevuori-Helkamaa ja S. Ripatti ovat työryhmän Eating Disorders Working Group of the Psychiatric Genomics Consortium jäseniä. Erratum in: Sci Rep. 2017 Aug 21;7(1):8379, doi: 10.1038/s41598-017-06409-3We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P = 2.04 x 10(-7); OR = 0.7; 95% confidence interval (CI) = 0.61-0.8) with independent replication (P = 0.04), suggesting a variant-mediated dysregulation of leptin signaling may play a role in AN. Multiple SNPs in LD with the variant support the nominal association. This demonstrates that although the clinical and etiologic heterogeneity of AN is universally recognized, further careful sub-typing of cases may provide more precise genomic signals. In this study, through a refinement of the phenotype spectrum of AN, we present a replicable GWAS signal that is nominally associated with AN, highlighting a potentially important candidate locus for further investigation.Peer reviewe

    Associations between Attention-Deficit/Hyperactivity Disorder and various eating disorders: A Swedish nationwide population study using multiple genetically informative approaches

    Get PDF
    Background Although attention-deficit hyperactivity/impulsivity disorder (ADHD) and eating disorders (EDs) frequently co-occur, little is known about the shared etiology. In this study we comprehensively investigated the genetic association between ADHD and various EDs, including anorexia nervosa (AN) and other EDs (OED, including bulimia nervosa [BN]). Methods We applied different genetically informative designs to register-based information of a Swedish nationwide population (N=3,550,118). We first examined the familial co-aggregation of clinically diagnosed ADHD and EDs across multiple types of relatives. We then applied quantitative genetic modeling in full-sisters and maternal half-sisters to estimate the genetic correlations between ADHD and EDs. We further tested the associations between ADHD polygenic risk scores (PRS) and ED symptoms, and between AN PRS and ADHD symptoms, in a genotyped population-based sample (N=13,472). Results Increased risk of all types of EDs was found in individuals with ADHD (any ED: OR [95% CI]=3.97 [3.81-4.14], AN: 2.68 [2.15-2.86], OED: 4.66 [4.47-4.87], BN: 5.01 [4.63-5.41]) and their relatives compared to individuals without ADHD and their relatives. The magnitude of the associations reduced as the degree of relatedness decreased, suggesting shared familial liability between ADHD and EDs. Quantitative genetic models revealed stronger genetic correlation of ADHD with OED (0.37 [0.31-0.42]) than with AN (0.14 [0.05-0.22]). ADHD PRS correlated positively with ED symptom measures overall and sub-scales “drive for thinness” and “body dissatisfaction”, despite small effect sizes. Conclusions We observed stronger genetic association with ADHD for non-AN EDs than AN, highlighting specific genetic correlation beyond a general genetic factor across psychiatric disorders
    corecore