685 research outputs found

    The Hidden Potential of Luminescent Solar Concentrators

    Get PDF
    The luminescent solar concentrator (LSC), originally introduced almost four decades ago as a potential alternative/complement to silicon solar cells, has since evolved to a versatile photovoltaic (PV) solution with realistic potential for seamless integration into the urban architectural landscape. Yet, a popular perception of the device still persists: the LSC is mostly seen as just a low‐efficiency solar panel. This review challenges this outdated notion and argues that the LSC is, to the contrary, a powerful and highly adaptive photonic platform with many more capabilities and potential than only generating electricity from sunlight. The field has seen a rapidly expanding application portfolio over the last few years, with LSCs now considered in various sensing applications, “smart” windows, chemical reactors, horticulture, and even in optical communication and real‐time responsive systems. The main goal of this work is to shed light onto this alternative application space and highlight the LSC's unique spectral manipulation, light distribution, and light concentration properties, and as a result, to encourage the participation from a broader range of disciplines into LSC research with the ultimate aim of stimulating the development of novel, LSC inspired technologies

    Nano-textured polymers for future architectural needs

    Get PDF
    The rapid developments in molecular sciences like nanotechnology and self-organizing molecular systems generate a wealth of new materials and functions. In comparison to electronics the application in architecture remains somewhat underexposed. New functionalities in optics, responsive mechanics, sensing and adjustable permeation for gases and water might add to new opportunities in providing for personal comfort and energy management in houses and professional buildings. With a number of examples we demonstrate how complex but well-controlled molecular architectures provide functionalities worthwhile of being integrated in architectural designs. Optical coatings are capable of switching colors or reflectivity, creating possibilities for design but also for the control of thermal transmission through windows. They respond to temperature, light intensity, or both. Selectively-reflective thin polymer layers or paint pigments can be designed to switch between infrared and visible regions of the solar spectrum. Coatings can be designed to change their topology and thereby their appearance, of interest for in-house light management, or just for aesthetic appeal. Plastic materials can be imbued with the property of autonomous sun tracking and provided morphing behavior upon contact with moisture or exposure to light. Many of these materials need further developments to meet the requirements for building integration with respect to robustness, lifetime, and the like, which will only be accomplished after demonstration of interest from the architectural world

    Direct ink writing of anisotropic luminescent materials

    Get PDF
    Luminescent solar concentrators are relatively inexpensive devices proposed to collect, convert, and redirect incident (sun)light for a variety of potential applications. In this work, dichroic dyes are embedded in a liquid crystal elastomer matrix and used as feedstock for direct ink writing. Direct ink writing is a promising and versatile application technique for arbitrarily aligning the dichroic dyes over glass and poly(methyl methacrylate) lightguide surfaces. The resulting prints display anisotropic edge emissions, and suggest usage as striking visual objects, combining localized color and intensity variations when viewed through a polarizer

    Anisotropic light emissions in luminescent solar concentrators-isotropic systems

    Get PDF
    In this paper we develop a model to describe the emission profile from randomly oriented dichroic dye molecules in a luminescent solar concentrator (LSC) waveguide as a function of incoming light direction. The resulting emission is non-isotropic, in contradiction to what is used in almost all previous simulations on the performance of LSCs, and helps explain the large surface losses measured in these devices. To achieve more precise LSC performance simulations we suggest that the dichroic nature of the dyes must be included in the future modeling efforts

    Intrinsic Low Temperature Paramagnetism in B-DNA

    Full text link
    We present experimental study of magnetization in λ\lambda-DNA in conjunction with structural measurements. The results show the surprising interplay between the molecular structures and their magnetic property. In the B-DNA state, λ\lambda-DNA exhibits paramagnetic behaviour below 20 K that is non-linear in applied magnetic field whereas in the A-DNA state, remains diamagnetic down to 2 K. We propose orbital paramagnetism as the origin of the observed phenomena and discuss its relation to the existence of long range coherent transport in B-DNA at low temperature.Comment: 5 pages, 4 figures, submitted to Physical Review Letters October 200
    corecore