285 research outputs found

    A new look at the Plebanski-Demianski family of solutions

    Full text link
    The Plebanski-Demianski metric, and those that can be obtained from it by taking coordinate transformations in certain limits, include the complete family of space-times of type D with an aligned electromagnetic field and a possibly non-zero cosmological constant. Starting with a new form of the line element which is better suited both for physical interpretation and for identifying different subfamilies, we review this entire family of solutions. Our metric for the expanding case explicitly includes two parameters which represent the acceleration of the sources and the twist of the repeated principal null congruences, the twist being directly related to both the angular velocity of the sources and their NUT-like properties. The non-expanding type D solutions are also identified. All special cases are derived in a simple and transparent way.Comment: 33 pages, 2 figures. To appear in Int. J. Mod. Phys.

    Anisotropic fluids in the case of stationary and axisymmetric spaces of General Relativity

    Get PDF
    We present a stationary axisymmetric solution belonging to Carter's family [A] of spaces and representing an anisotropic fluid configuration.Comment: 14 pages,submitted to Int J Mod Phys

    Noncommutative Einstein-Maxwell pp-waves

    Get PDF
    The field equations coupling a Seiberg-Witten electromagnetic field to noncommutative gravity, as described by a formal power series in the noncommutativity parameters θαβ\theta^{\alpha\beta}, is investigated. A large family of solutions, up to order one in θαβ\theta^{\alpha\beta}, describing Einstein-Maxwell null pp-waves is obtained. The order-one contributions can be viewed as providing noncommutative corrections to pp-waves. In our solutions, noncommutativity enters the spacetime metric through a conformal factor and is responsible for dilating/contracting the separation between points in the same null surface. The noncommutative corrections to the electromagnetic waves, while preserving the wave null character, include constant polarization, higher harmonic generation and inhomogeneous susceptibility. As compared to pure noncommutative gravity, the novelty is that nonzero corrections to the metric already occur at order one in θαβ\theta^{\alpha\beta}.Comment: 19 revtex pages. One refrence suppressed, two references added. Minor wording changes in the abstract, introduction and conclusio

    Derivation of Source-Free Maxwell and Gravitational Radiation Equations by Group Theoretical Methods

    Full text link
    We derive source-free Maxwell-like equations in flat spacetime for any helicity "j" by comparing the transformation properties of the 2(2j+1) states that carry the manifestly covariant representations of the inhomogeneous Lorentz group with the transformation properties of the two helicity "j" states that carry the irreducible representations of this group. The set of constraints so derived involves a pair of curl equations and a pair of divergence equations. These reduce to the free-field Maxwell equations for j=1 and the analogous equations coupling the gravito-electric and the gravito-magnetic fields for j=2.Comment: 15 pages, no figures, to appear in Int. J. Mod. Phys.

    On the invariant symmetries of the D\mathcal{D}-metrics

    Full text link
    We analyze the symmetries and other invariant qualities of the D\mathcal{D}-metrics (type D aligned Einstein Maxwell solutions with cosmological constant whose Debever null principal directions determine shear-free geodesic null congruences). We recover some properties and deduce new ones about their isometry group and about their quadratic first integrals of the geodesic equation, and we analyze when these invariant symmetries characterize the family of metrics. We show that the subfamily of the Kerr-NUT solutions are those admitting a Papapetrou field aligned with the Weyl tensor.Comment: 18 pages; v2: minor change

    Accelerated black holes in an anti-de Sitter universe

    Full text link
    The C-metric is one of few known exact solutions of Einstein's field equations which describes the gravitational field of moving sources. For a vanishing or positive cosmological constant, the C-metric represents two accelerated black holes in asymptotically flat or de Sitter spacetime. For a negative cosmological constant the structure of the spacetime is more complicated. Depending on the value of the acceleration, it can represent one black hole or a sequence of pairs of accelerated black holes in the spacetime with an anti-de Sitter-like infinity. The global structure of this spacetime is analyzed and compared with an empty anti-de Sitter universe. It is illustrated by 3D conformal-like diagrams.Comment: 14 pages, 17 figures [see http://utf.mff.cuni.cz/~krtous/physics/CADS/ for the version with the high quality figures and for related animations and interactive 3D diagrams

    Inhomogeneous High Frequency Expansion-Free Gravitational Waves

    Full text link
    We describe a natural inhomogeneous generalization of high frequency plane gravitational waves. The waves are high frequency waves of the Kundt type whose null propagation direction in space-time has vanishing expansion, twist and shear but is not covariantly constant. The introduction of a cosmological constant is discussed in some detail and a comparison is made with high frequency gravity waves having wave fronts homeomorphic to 2-spheres.Comment: 18 pages, Latex file, accepted for publication in Physical Review

    Kerr-Schild metrics revisited I. The ground state

    Full text link
    The Kerr-Schild pencil of metrics g_{ab}+\La l_al_b is investigated in the generic case when it maps an arbitrary vacuum space-time with metric gabg_{ab} to a vacuum space-time. The theorem is proved that this generic case, with the field ll shearing, does not contain the shear-free subclass as a smooth limit. It is shown that one of the K\'ota-Perj\'es metrics is a solution in the shearing class.Comment: 16 page

    Obtaining the Weyl tensor from the Bel-Robinson tensor

    Full text link
    The algebraic study of the Bel-Robinson tensor proposed and initiated in a previous work (Gen. Relativ. Gravit. {\bf 41}, see ref [11]) is achieved. The canonical form of the different algebraic types is obtained in terms of Bel-Robinson eigen-tensors. An algorithmic determination of the Weyl tensor from the Bel-Robinson tensor is presented.Comment: 21 page
    corecore