156 research outputs found
Froth-like minimizers of a non local free energy functional with competing interactions
We investigate the ground and low energy states of a one dimensional non
local free energy functional describing at a mean field level a spin system
with both ferromagnetic and antiferromagnetic interactions. In particular, the
antiferromagnetic interaction is assumed to have a range much larger than the
ferromagnetic one. The competition between these two effects is expected to
lead to the spontaneous emergence of a regular alternation of long intervals on
which the spin profile is magnetized either up or down, with an oscillation
scale intermediate between the range of the ferromagnetic and that of the
antiferromagnetic interaction. In this sense, the optimal or quasi-optimal
profiles are "froth-like": if seen on the scale of the antiferromagnetic
potential they look neutral, but if seen at the microscope they actually
consist of big bubbles of two different phases alternating among each other. In
this paper we prove the validity of this picture, we compute the oscillation
scale of the quasi-optimal profiles and we quantify their distance in norm from
a reference periodic profile. The proof consists of two main steps: we first
coarse grain the system on a scale intermediate between the range of the
ferromagnetic potential and the expected optimal oscillation scale; in this way
we reduce the original functional to an effective "sharp interface" one. Next,
we study the latter by reflection positivity methods, which require as a key
ingredient the exact locality of the short range term. Our proof has the
conceptual interest of combining coarse graining with reflection positivity
methods, an idea that is presumably useful in much more general contexts than
the one studied here.Comment: 38 pages, 2 figure
Complementary resource use by tree species in a rain forest tree plantation
Mixed-species tree plantations, composed of high-value native rain forest timbers, are potential forestry systems for the subtropics and tropics that can provide ecological and production benefits. Choices of rain forest tree species for mixtures are generally based on the concept that assemblages of fast-growing and light-demanding species are less productive than assemblages of species with different shade tolerances. We examined the hypothesis that mixtures of two fast-growing species compete for resources, while mixtures of shade-tolerant and shade-intolerant species are complementary. Ecophysiological characteristics of young trees were determined and analyzed with a physiology-based canopy model (MAESTRA) to test species interactions. Contrary to predictions, there was evidence for complementary interactions between two fast-growing species with respect to nutrient uptake, nutrient use efficiency, and nutrient cycling. Fast-growing Elaeocarpus angustifolius had maximum demand for soil nutrients in summer, the most efficient internal recycling of N, and low P use efficiency at the leaf and whole-plant level and produced a large amount of nutrient-rich litter. In contrast, fast-growing Grevillea robusta had maximum demand for soil nutrients in spring and highest leaf nutrient use efficiency for N and P and produced low-nutrient litter. Thus, mixtures of fast-growing G. robusta and E. angustifolius or G. robusta and slow-growing, shade-tolerant Castanospermum australe may have similar or even greater productivity than monocultures, as light requirement is just one of several factors affecting performance of mixed-species plantations. We conclude that the knowledge gained here will be useful for designing large-scale experimental mixtures and commercial forestry systems in subtropical Australia and elsewhere
Effectiveness and Cost Effectiveness of Expanding Harm Reduction and Antiretroviral Therapy in a Mixed HIV Epidemic: A Modeling Analysis for Ukraine
A cost-effectiveness study by Sabina Alistar and colleagues evaluates the effectiveness and cost effectiveness of different levels of investment in methadone, ART, or both, in the mixed HIV epidemic in Ukraine
Summer Reading: Predicting Adolescent Word Learning from Aptitude, Time Spent Reading, and Text Type
Human Th1 Cells That Express CD300a Are Polyfunctional and After Stimulation Up-Regulate the T-Box Transcription Factor Eomesodermin
Human naïve CD4 T cells express low levels of the immunomodulatory receptor CD300a, whereas effector/memory CD4 cells can be either CD300a+ or CD300a−. This suggested that CD300a expression could define a specific subset within the effector/memory CD4 T cell subpopulations. In fact, ex vivo analysis of the IFN-γ producing CD4 T cells showed that they are enriched in the CD300a+ subset. Moreover, stimulated CD4 T cells producing TNF-α and IL-2 besides IFN-γ (polyfunctional) are predominantly CD300a+. In addition to producing markedly higher levels of Th1-associated cytokines, the stimulated CD300a+ CD4 T cells are distinguished by a striking up-regulation of the T-box transcription factor eomesodermin (Eomes), whereas T-bet is up-regulated in both CD300a+ and CD300a− activated CD4 T cells to similar levels. The pleiotropic cytokine TGF-β1 has a determinant role in dictating the development of this Th1 subset, as its presence inhibits the expression of CD300a and down-regulates the expression of Eomes and IFN-γ. We conclude that CD300a+ human Th1 cells tend to be polyfunctional and after stimulation up-regulate Eomes
- …