156 research outputs found

    Froth-like minimizers of a non local free energy functional with competing interactions

    Full text link
    We investigate the ground and low energy states of a one dimensional non local free energy functional describing at a mean field level a spin system with both ferromagnetic and antiferromagnetic interactions. In particular, the antiferromagnetic interaction is assumed to have a range much larger than the ferromagnetic one. The competition between these two effects is expected to lead to the spontaneous emergence of a regular alternation of long intervals on which the spin profile is magnetized either up or down, with an oscillation scale intermediate between the range of the ferromagnetic and that of the antiferromagnetic interaction. In this sense, the optimal or quasi-optimal profiles are "froth-like": if seen on the scale of the antiferromagnetic potential they look neutral, but if seen at the microscope they actually consist of big bubbles of two different phases alternating among each other. In this paper we prove the validity of this picture, we compute the oscillation scale of the quasi-optimal profiles and we quantify their distance in norm from a reference periodic profile. The proof consists of two main steps: we first coarse grain the system on a scale intermediate between the range of the ferromagnetic potential and the expected optimal oscillation scale; in this way we reduce the original functional to an effective "sharp interface" one. Next, we study the latter by reflection positivity methods, which require as a key ingredient the exact locality of the short range term. Our proof has the conceptual interest of combining coarse graining with reflection positivity methods, an idea that is presumably useful in much more general contexts than the one studied here.Comment: 38 pages, 2 figure

    Complementary resource use by tree species in a rain forest tree plantation

    Get PDF
    Mixed-species tree plantations, composed of high-value native rain forest timbers, are potential forestry systems for the subtropics and tropics that can provide ecological and production benefits. Choices of rain forest tree species for mixtures are generally based on the concept that assemblages of fast-growing and light-demanding species are less productive than assemblages of species with different shade tolerances. We examined the hypothesis that mixtures of two fast-growing species compete for resources, while mixtures of shade-tolerant and shade-intolerant species are complementary. Ecophysiological characteristics of young trees were determined and analyzed with a physiology-based canopy model (MAESTRA) to test species interactions. Contrary to predictions, there was evidence for complementary interactions between two fast-growing species with respect to nutrient uptake, nutrient use efficiency, and nutrient cycling. Fast-growing Elaeocarpus angustifolius had maximum demand for soil nutrients in summer, the most efficient internal recycling of N, and low P use efficiency at the leaf and whole-plant level and produced a large amount of nutrient-rich litter. In contrast, fast-growing Grevillea robusta had maximum demand for soil nutrients in spring and highest leaf nutrient use efficiency for N and P and produced low-nutrient litter. Thus, mixtures of fast-growing G. robusta and E. angustifolius or G. robusta and slow-growing, shade-tolerant Castanospermum australe may have similar or even greater productivity than monocultures, as light requirement is just one of several factors affecting performance of mixed-species plantations. We conclude that the knowledge gained here will be useful for designing large-scale experimental mixtures and commercial forestry systems in subtropical Australia and elsewhere

    Human Th1 Cells That Express CD300a Are Polyfunctional and After Stimulation Up-Regulate the T-Box Transcription Factor Eomesodermin

    Get PDF
    Human naïve CD4 T cells express low levels of the immunomodulatory receptor CD300a, whereas effector/memory CD4 cells can be either CD300a+ or CD300a−. This suggested that CD300a expression could define a specific subset within the effector/memory CD4 T cell subpopulations. In fact, ex vivo analysis of the IFN-γ producing CD4 T cells showed that they are enriched in the CD300a+ subset. Moreover, stimulated CD4 T cells producing TNF-α and IL-2 besides IFN-γ (polyfunctional) are predominantly CD300a+. In addition to producing markedly higher levels of Th1-associated cytokines, the stimulated CD300a+ CD4 T cells are distinguished by a striking up-regulation of the T-box transcription factor eomesodermin (Eomes), whereas T-bet is up-regulated in both CD300a+ and CD300a− activated CD4 T cells to similar levels. The pleiotropic cytokine TGF-β1 has a determinant role in dictating the development of this Th1 subset, as its presence inhibits the expression of CD300a and down-regulates the expression of Eomes and IFN-γ. We conclude that CD300a+ human Th1 cells tend to be polyfunctional and after stimulation up-regulate Eomes

    Alley coppice—a new system with ancient roots

    Get PDF

    Assistive Technology

    No full text
    • …
    corecore