36 research outputs found
Control of Dephasing and Phonon Emission in Coupled Quantum Dots
We predict that phonon subband quantization can be detected in the non-linear
electron current through double quantum dot qubits embedded into nano-size
semiconductor slabs, acting as phonon cavities. For particular values of the
dot level splitting , piezo-electric or deformation potential
scattering is either drastically reduced as compared to the bulk case, or
strongly enhanced due to phonon van Hove singularities. By tuning via
gate voltages, one can either control dephasing, or strongly increase emission
into phonon modes with characteristic angular distributions.Comment: 4 pages, 3 figures, accepted for publication as Rapid Comm. in Phys.
Rev.
Adiabatic Transfer of Electrons in Coupled Quantum Dots
We investigate the influence of dissipation on one- and two-qubit rotations
in coupled semiconductor quantum dots, using a (pseudo) spin-boson model with
adiabatically varying parameters. For weak dissipation, we solve a master
equation, compare with direct perturbation theory, and derive an expression for
the `fidelity loss' during a simple operation that adiabatically moves an
electron between two coupled dots. We discuss the possibility of visualizing
coherent quantum oscillations in electron `pump' currents, combining quantum
adiabaticity and Coulomb blockade. In two-qubit spin-swap operations where the
role of intermediate charge states has been discussed recently, we apply our
formalism to calculate the fidelity loss due to charge tunneling between two
dots.Comment: 13 pages, 8 figures, to appear in Phys. Rev.
Two-electron quantum dots as scalable qubits
We show that two electrons confined in a square semiconductor quantum dot
have two isolated low-lying energy eigenstates, which have the potential to
form the basis of scalable computing elements (qubits). Initialisation,
one-qubit and two-qubit universal gates, and readout are performed using
electrostatic gates and magnetic fields. Two-qubit transformations are
performed via the Coulomb interaction between electrons on adjacent dots.
Choice of initial states and subsequent asymmetric tuning of the tunnelling
energy parameters on adjacent dots control the effect of this interaction.Comment: Revised version, accepted by PR
Dephasing in sequential tunneling through a double-dot interferometer
We analyze dephasing in a model system where electrons tunnel sequentially
through a symmetric interference setup consisting of two single-level quantum
dots. Depending on the phase difference between the two tunneling paths, this
may result in perfect destructive interference. However, if the dots are
coupled to a bath, it may act as a which-way detector, leading to partial
suppression of the phase-coherence and the reappearance of a finite tunneling
current. In our approach, the tunneling is treated in leading order whereas
coupling to the bath is kept to all orders (using P(E) theory). We discuss the
influence of different bath spectra on the visibility of the interference
pattern, including the distinction between "mere renormalization effects" and
"true dephasing".Comment: 18 pages, 8 figures; For a tutorial introduction to dephasing see
http://iff.physik.unibas.ch/~florian/dephasing/dephasing.htm
Steering of a Bosonic Mode with a Double Quantum Dot
We investigate the transport and coherence properties of a double quantum dot
coupled to a single damped boson mode. Our numerically results reveal how the
properties of the boson distribution can be steered by altering parameters of
the electronic system such as the energy difference between the dots.
Quadrature amplitude variances and the Wigner function are employed to
illustrate how the state of the boson mode can be controlled by a stationary
electron current through the dots.Comment: 10 pages, 6 figures, to appear in Phys. Rev.
Dicke Effect in the Tunnel Current through two Double Quantum Dots
We calculate the stationary current through two double quantum dots which are
interacting via a common phonon environment. Numerical and analytical solutions
of a master equation in the stationary limit show that the current can be
increased as well as decreased due to a dissipation mediated interaction. This
effect is closely related to collective, spontaneous emission of phonons (Dicke
super- and subradiance effect), and the generation of a `cross-coherence' with
entanglement of charges in singlet or triplet states between the dots.
Furthermore, we discuss an inelastic `current switch' mechanism by which one
double dot controls the current of the other.Comment: 12 pages, 6 figures, to appear in Phys. Rev.
All-electric-spin control in interference single electron transistors
Single particle interference lies at the heart of quantum mechanics. The
archetypal double-slit experiment has been repeated with electrons in vacuum up
to the more massive molecules. Mesoscopic rings threaded by a magnetic
flux provide the solid-state analogous. Intra-molecular interference has been
recently discussed in molecular junctions. Here we propose to exploit
interference to achieve all-electrical control of a single electron spin in
quantum dots, a highly desirable property for spintronics and spin-qubit
applications. The device consists of an interference single electron transistor
(ISET), where destructive interference between orbitally degenerate electronic
states produces current blocking at specific bias voltages. We show that in the
presence of parallel polarized ferromagnetic leads the interplay between
interference and the exchange coupling on the system generates an effective
energy renormalization yielding different blocking biases for majority and
minority spins. Hence, by tuning the bias voltage full control over the spin of
the trapped electron is achieved.Comment: 9 pages, 5 figure
Environmental and lifestyle risk factors of breast cancer in Malta-a retrospective case-control study
The funding for this research was obtained as part of IMaGenX – and ItaliaMalta co-financed EU project Operational Programme 2007–2013.AIM AND BACKGROUND:
Environmental exposures are known to play a role in the development of cancer, including breast cancer. There are known associations of breast cancer with environmental factors such as sunlight exposure, diet and exercise and alcohol consumption as well as physiological factors. This study examines the prevalence of risk factors for breast cancer related to dietary intake, environment and lifestyle in the female population of Malta. Malta has had little research in this area, and therefore an exploratory study was carried out.
METHODS:
A retrospective case-control design was applied. Two hundred cases and 403 controls were included. Both cases and controls were subjects without a known family history for breast cancer. Controls were age-matched to cases in an age-decade category roughly at a 2:1 ratio. Interviews were carried out face-to-face using a questionnaire designed by Maltese and Sicilian researchers, encompassing various factors including diet, lifestyle, physiological factors and medical history. Breast cancer risk was then analysed using both univariate and multivariate analyses. For factors having a metric scale, the Mann-Whitney test was used to compare mean scores, while for categorical factors, the chi-square test was used to compare percentages between the case and control groups. Statistical modelling was carried out using binary logistic regression to relate the likelihood of breast cancer to over 50 risk/protective factors analysed collectively.
RESULTS:
Univariate analysis showed around 20 parameters of interest, 14 of which were statistically significant at a 0.05 level of significance. Logistic regression analysis identified 11 predictors of interest that were statistically significant. Tomato, coffee and canned meat consumption were associated with lower likelihood of breast cancer (OR = 0.988, 0.901, 0.892, respectively), whereas beans and cabbage consumption and low sodium salt were positively associated with breast cancer (OR = 1.045, 1.834, 1.028, respectively). Premenopausal status was associated with a lower risk of breast cancer compared to postmenopausal status (OR = 0.067). Not having experienced myocardial infarction was associated with lower odds of breast cancer (OR = 0.331). Increased height was also found to have a strong association with risk of breast cancer, with the odds of having breast cancer increasing for every centimetre increase in height (OR = 1.048). In terms of quantity, odds of having breast cancer were lower in those exposed to sunlight (OR = 0.891). The odds of having breast cancer were also lower in those not using the oral contraceptive pill (OR = 0.454).
CONCLUSIONS:
Various factors in this exploratory study were found to be associated with development of breast cancer. While causal conclusions cannot be made, tomato consumption is of particular interest, as these results corroborate findings found in other studies. A negative association of breast cancer with sunlight exposure and oral contraceptive pill use corroborates findings in other studies. Other associations with dietary intake can be explained by dietary changes. More robust studies in this area, including possible longitudinal studies, are warranted.peer-reviewe