7 research outputs found
Pregnancy-upregulated nonubiquitous calmodulin kinase induces ligand-independent EGFR degradation
We describe here an important function of the novel calmodulin kinase I isoform, pregnancy-upregulated nonubiquitous calmodulin kinase (Pnck). Pnck (also known as CaM kinase Iβ2) was previously shown to be differentially overexpressed in a subset of human primary breast cancers, compared with benign mammary epithelial tissue. In addition, during late pregnancy, Pnck mRNA was shown to be strongly upregulated in epithelial cells of the mouse mammary gland exhibiting decreased proliferation and terminal differentiation. Pnck mRNA is also significantly upregulated in confluent and serum-starved cells, compared with actively growing proliferating cells (Gardner HP, Seung HI, Reynolds C, Chodosh LA. Cancer Res 60: 5571–5577, 2000). Despite these suggestive data, the true physiological role(s) of, or the signaling mechanism(s) regulated by Pnck, remain unknown. We now report that epidermal growth factor receptor (EGFR) levels are significantly downregulated in a ligand-independent manner in human embryonic kidney-293 (HEK-293) cells overexpressing Pnck. MAP kinase activation was strongly inhibited by EGFR downregulation in the Pnck-overexpressing cells. The EGFR downregulation was not the result of reduced transcription of the EGFR gene but from protea-lysosomal degradation of EGFR protein. Knockdown of endogenous Pnck mRNA levels by small interfering RNA transfection in human breast cancer cells resulted in upregulation of unliganded EGFR, consistent with the effects observed in the overexpression model of Pnck-mediated ligand-independent EGFR downregulation. Pnck thus emerges as a new component of the poorly understood mechanism of ligand-independent EGFR degradation, and it may represent an attractive therapeutic target in EGFR-regulated oncogenesis
Pnck induces ligand-independent EGFR degradation by probable perturbation of the Hsp90 chaperone complex
We have recently described a novel role for pregnancy-upregulated nonubiquitous calmodulin kinase (Pnck) in the induction of ligand-independent epidermal growth factor receptor (EGFR) degradation (Deb TB, Coticchia CM, Barndt R, Zuo H, Dickson RB, and Johnson MD. Am J Physiol Cell Physiol 295: C365–C377, 2008). In the current communication, we explore the probable mechanism by which Pnck induces ligand-independent EGFR degradation. Pnck-induced EGFR degradation is calcium/calmodulin independent and is regulated by cell density, with the highest EGFR degradation observed at low cell density. Pnck is a novel heat shock protein 90 (Hsp90) client protein that can be coimmunoprecipitated with Hsp90. Treatment of Pnck-overexpressing cells with the pharmacologic Hsp90 inhibitor geldanamycin results in enhanced EGFR degradation, and destruction of Pnck. In cells in which Pnck is inducing EGFR degradation, we observed that Hsp90 exhibits reduced electrophoretic mobility, and through mass spectrometric analysis of immunopurified Hsp90 protein we demonstrated enhanced phosphorylation at threonine 89 and 616 (in both Hsp90-α and -β) and serine 391 (in Hsp90-α). Kinase-active Pnck protein is degraded by the proteasome, concurrent with EGFR degradation. A Pnck mutant (T171A) protein with suppressed kinase activity induced EGFR degradation to essentially the same level as wild-type (WT) Pnck, suggesting that Pnck kinase activity is not required for the induction of EGFR degradation. Although EGFR is degraded, overexpression of WT Pnck paradoxically promoted cellular proliferation, whereas cells expressing mutant Pnck (T171A) were growth inhibited. WT Pnck promoted S to G2 transition, but cells expressing the mutant exhibited higher residency time in S phase. Basal MAP kinase activity was inhibited by WT Pnck but not by mutant T171A Pnck protein. Cyclin-dependent kinase (Cdk) inhibitor p21/Cip-1/Waf-1 was transcriptionally suppressed downstream to MAP kinase inhibition by WT Pnck, but not the mutant protein. Collectively, these data suggest that 1) Pnck induces ligand-independent EGFR degradation most likely through perturbation of Hsp90 chaperone activity due to Hsp90 phosphorylation, 2) EGFR degradation is coupled to proteasomal degradation of Pnck, and 3) modulation of basal MAP kinase activity, p21/Cip-1/Waf-1 expression, and cellular growth by Pnck is independent of Pnck-induced ligand-independent EGFR degradation
Abstracts of National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020
This book presents the abstracts of the papers presented to the Online National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020 (RDMPMC-2020) held on 26th and 27th August 2020 organized by the Department of Metallurgical and Materials Science in Association with the Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, India.
Conference Title: National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020Conference Acronym: RDMPMC-2020Conference Date: 26–27 August 2020Conference Location: Online (Virtual Mode)Conference Organizer: Department of Metallurgical and Materials Engineering, National Institute of Technology JamshedpurCo-organizer: Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, IndiaConference Sponsor: TEQIP-