3 research outputs found

    Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT2A receptor and SIRT1–PGC-1α axis

    Get PDF
    Mitochondria in neurons, in addition to their primary role in bioenergetics, also contribute to specialized functions, including regulation of synaptic transmission, Ca2+ homeostasis, neuronal excitability, and stress adaptation. However, the factors that influence mitochondrial biogenesis and function in neurons remain poorly elucidated. Here, we identify an important role for serotonin (5-HT) as a regulator of mitochondrial biogenesis and function in rodent cortical neurons, via a 5-HT2A receptor-mediated recruitment of the SIRT1–PGC-1α axis, which is relevant to the neuroprotective action of 5-HT. We found that 5-HT increased mitochondrial biogenesis, reflected through enhanced mtDNA levels, mitotracker staining, and expression of mitochondrial components. This resulted in higher mitochondrial respiratory capacity, oxidative phosphorylation (OXPHOS) efficiency, and a consequential increase in cellular ATP levels. Mechanistically, the effects of 5-HT were mediated via the 5-HT2A receptor and master modulators of mitochondrial biogenesis, SIRT1 and PGC-1α. SIRT1 was required to mediate the effects of 5-HT on mitochondrial biogenesis and function in cortical neurons. In vivo studies revealed that 5-HT2A receptor stimulation increased cortical mtDNA and ATP levels in a SIRT1-dependent manner. Direct infusion of 5-HT into the neocortex and chemogenetic activation of 5-HT neurons also resulted in enhanced mitochondrial biogenesis and function in vivo. In cortical neurons, 5-HT enhanced expression of antioxidant enzymes, decreased cellular reactive oxygen species, and exhibited neuroprotection against excitotoxic and oxidative stress, an effect that required SIRT1. These findings identify 5-HT as an upstream regulator of mitochondrial biogenesis and function in cortical neurons and implicate the mitochondrial effects of 5-HT in its neuroprotective action.Fil: Fanibunda, S. E.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España. Kasturba Health Society; IndiaFil: Deb, Sukrita. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Maniyadath, Babukrishna. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Tiwari, Praachi. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Ghai, Utkarsha. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Gupta, Samir. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Figueiredo, Dwight. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Weisstaub, Noelia V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Gingrich, Jay A.. Columbia University; Estados UnidosFil: Vaidya, Ashok D.B.. Kasturba Health Society; IndiaFil: Kolthur Seetharam, Ullas. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Vaidya, Vidita A.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; Españ

    Microglia complement signaling promotes neuronal elimination and normal brain functional connectivity

    Get PDF
    Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However, while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement signaling mediates synaptic pruning in the brain more generally. Here we found that mice lacking the Complement receptor 3, the major microglia complement receptor, failed to show a deficit in either synaptic pruning or axon elimination in the developing mouse cortex. Instead, mice lacking Complement receptor 3 exhibited a deficit in the perinatal elimination of neurons in the cortex, a deficit that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data demonstrate a role for complement in promoting neuronal elimination in the developing cortex
    corecore