25 research outputs found

    A numerical study of time-dependent schrödinger equation for multiphoton vibrational interaction of no molecule, modelled as morse oscillator, with intense far-infrared femtosecond lasers

    Get PDF
    For the NO molecule, modelled as a Morse oscillator, time-dependent (TD) nuclear Schrödinger equation has been numerically solved for the multiphoton vibrational dynamics of the molecule under a far-infrared laser of wavelength 10503 nm, and four different intensities, I = 1 × 108, 1 × 1013, 5 × 1016, and 5 × 1018 W cm-2 respectively. Starting from the vibrational ground state at zero time, various TD quantities such as the norm, dissociation probability, potential energy curve and dipole moment are examined. Rich high-harmonics generation (HHG) spectra and above-threshold dissociation (ATD) spectra, due to the multiphoton interaction of vibrational motions with the laser field, and consequent elevation to the vibrational continuum, have been obtained and analysed

    Deterministic quantum state transfer of atoms in a random magnetic field

    Full text link
    We propose a method for transferring atoms to a target quantum state for a multilevel quantum system with sequentially increasing, but otherwise unknown, energy splitting. This is achieved with a feedback algorithm that processes off-resonant optical measurements of state populations during adiabatic rapid passage in real-time. Specifically, we reliably perform the transfer ∣F=2,mF=2⟩→∣1,1⟩→∣2,1⟩|F=2,m_F=2\rangle \rightarrow |1,1\rangle \rightarrow |2,1\rangle for a sample of ultracold 87^{87}Rb in the presence of a random external magnetic field

    Steerable optical tweezers for ultracold atom studies

    Full text link
    We report on the implementation of an optical tweezer system for controlled transport of ultracold atoms along a narrow, static confinement channel. The tweezer system is based on high-efficiency acousto-optical deflectors and offers two-dimensional control over beam position. This opens up the possibility for tracking the transport channel when shuttling atomic clouds along the guide, forestalling atom spilling. Multiple clouds can be tracked independently by time-shared tweezer beams addressing individual sites in the channel. The deflectors are controlled using a multichannel direct digital synthesizer, which receives instructions on a sub-microsecond time scale from a field-programmable gate array. Using the tweezer system, we demonstrate sequential binary splitting of an ultracold 87Rb\rm^{87}Rb cloud into 252^5 clouds.Comment: 4 pages, 5 figures, 1 movie lin

    Strong zero-field F\"orster resonances in K-Rb Rydberg systems

    Full text link
    We study resonant dipole-dipole coupling and the associated van der Waals energy shifts in Rydberg excited atomic rubidium and potassium and investigate F\"orster resonances between interspecies pair states. A comprehensive survey over experimentally accessible pair state combinations reveals multiple candidates with small F\"orster defects. We crucially identify the existence of an ultrastrong, "low" electric field K-Rb F\"orster resonance with a extremely large zero-field crossover distance exceeding 100 μ\mum between the van der Waals regime and the resonant regime. This resonance allows for a strong interaction over a wide range of distances and by investigating its dependence on the strength and orientation of external fields we show this to be largely isotropic. As a result, the resonance offers a highly favorable setting for studying long-range resonant excitation transfer and entanglement generation between atomic ensembles in a flexible geometry. The two-species K-Rb system establishes a unique way of realizing a Rydberg single-photon optical transistor with a high-input photon rate and we specifically investigate an experimental scheme with two separate ensembles

    Distant RF field sensing with a passive Rydberg-atomic transducer

    Get PDF
    We combine a rubidium vapor cell with a corner-cube prism reflector to form a passive RF transducer, allowing the detection of microwave signals at a location distant from the active components required for atomic sensing. This compact transducer has no electrical components and is optically linked to an active base station by a pair of free-space laser beams that establish an electromagnetically induced transparency scenario. Microwave signals at the transducer location are imprinted onto an optical signal which is detected at the base station. Our sensing architecture with a remote standalone transducer unit adds important flexibility to Rydberg-atom based sensing technologies, which are currently subject to significant attention. We demonstrate a ∼30 m link with no particular effort and foresee significant future prospects of achieving a much larger separation between the transducer and the base station
    corecore