145 research outputs found
Explainable contextual data driven fusion
Numerous applications require the intelligent combining of disparate sensor data streams to create a more complete and enhanced observation in support of underlying tasks like classification, regression, or decision making. This presentation is focused on two underappreciated and often overlooked parts of information fusion, explainability and context. Due to the rapidly increasing deployment and complexity of machine learning solutions, it is critical that the humans who deploy these algorithms can understand why and how a given algorithm works, as well as be able to determine when an algorithm is suitable for use in a particular instance of the problem. The first half of this paper outlines a new similarity measure for capacities and integrals. This measure is used to compare machine learned fusion solutions and explain what a single fusion solution learned. The second half of the paper is focused on contextual fusion with respect to incomplete (limited knowledge) models and metadata for unmanned aerial vehicles (UAVs). Example UAV metadata includes platform (e.g., GPS, IMU, etc.) and environmental (e.g., weather, solar position, etc.) data. Incomplete models herein are a result of limitations of machine learning related to under-sampling of training data. To address these challenges, a new contextually adaptive online Choquet integral is outlined
Growth hormone deficiency in megalencephaly-capillary malformation syndrome: An association with activating mutations in PIK3CA
Megalencephaly-capillary malformation syndrome (MCAP) is a brain overgrowth disorder characterized by cortical malformations (specifically polymicrogyria), vascular anomalies, and segmental overgrowth secondary to somatic activating mutations in the PI3K-AKT-MTOR pathway (PIK3CA). Cases of growth failure and hypoglycemia have been reported in patients with MCAP, raising the suspicion for unappreciated growth hormone (GH) deficiency. Here we report an observational multicenter study of children with MCAP and GH deficiency. Eleven participants were confirmed to have GH deficiency, all with very low or undetectable circulating concentrations of insulin-like growth factor-1 and insulin-like growth factor binding protein-3. Seven underwent GH stimulation testing and all had insufficient responses with a median GH peak of 3.7 ng/ml (range 1.1-8.6). Growth patterns revealed a drastic decline in length z-scores within the first year of life but then stabilized afterward. Five were treated with GH; one discontinued due to inconsolability. The other four participants continued on GH with improvement in linear growth velocity. Other endocrinopathies were identified in 7 of the 11 participants in this cohort. This study indicates that GH deficiency is associated with MCAP and that children with MCAP and hypoglycemia and/or postnatal growth failure should be evaluated for GH deficiency and other endocrinopathies
Hypohidrotic Ectodermal Dysplasia and Immunodeficiency with Coincident NEMO and EDA Mutations
Ectodermal dysplasias (ED) are uncommon genetic disorders resulting in abnormalities in ectodermally derived structures. Many ED-associated genes have been described, of which ectodysplasin-A (EDA) is one of the more common. The NF-κB essential modulator (NEMO encoded by the IKBKG gene) is unique in that mutations result in severe humoral and cellular immunologic defects in addition to ED. We describe three unrelated kindreds with defects in both EDA and IKBKG resulting from X-chromosome crossover. This demonstrates the importance of thorough immunologic consideration of patients with ED even when an EDA etiology is confirmed, and raises the possibility of a specific phenotype arising from coincident mutations in EDA and IKBKG
Taxonomic review of the genus Stenotus Jakovlev (Hemiptera: Heteroptera: Miridae) from the Korean Peninsula
AbstractA genus Stenotus Jakovlev (Hemiptera: Heteroptera: Miridae) is reviewed taxonomically from the Korean Peninsula with a new record Stenotus binotatus (Fabricius 1794). Morphological information, such as descriptions of male and female genitalia, of the Korean species with photographs and illustrations, and a key to the Korean species are provided
Another tool in the genome-wide association study arsenal: population-based detection of somatic gene conversion
The hunt for the genetic contributors to complex disease has used a number of strategies, resulting in the identification of variants associated with many of the common diseases affecting society. However most of the genetic variants detected to date are single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) and fall far short of explaining the full genetic component of any given disease. An as yet untapped genomic mechanism is somatic gene conversion and deletion, which could be complicit in disease risk but has been challenging to detect in genome-wide datasets. In a recent publication in BMC Medicine by Kenneth Ross, the author uses existing datasets to look at somatic gene conversion and deletion in human disease. Here, we describe how Ross's recent efforts to detect such occurrences could impact the field going forward
Genome-wide DNA methylation analysis in cohesin mutant human cell lines
The cohesin complex has recently been shown to be a key regulator of eukaryotic gene expression, although the mechanisms by which it exerts its effects are poorly understood. We have undertaken a genome-wide analysis of DNA methylation in cohesin-deficient cell lines from probands with Cornelia de Lange syndrome (CdLS). Heterozygous mutations in NIPBL, SMC1A and SMC3 genes account for ∼65% of individuals with CdLS. SMC1A and SMC3 are subunits of the cohesin complex that controls sister chromatid cohesion, whereas NIPBL facilitates cohesin loading and unloading. We have examined the methylation status of 27 578 CpG dinucleotides in 72 CdLS and control samples. We have documented the DNA methylation pattern in human lymphoblastoid cell lines (LCLs) as well as identified specific differential DNA methylation in CdLS. Subgroups of CdLS probands and controls can be classified using selected CpG loci. The X chromosome was also found to have a unique DNA methylation pattern in CdLS. Cohesin preferentially binds to hypo-methylated DNA in control LCLs, whereas the differential DNA methylation alters cohesin binding in CdLS. Our results suggest that in addition to DNA methylation multiple mechanisms may be involved in transcriptional regulation in human cells and in the resultant gene misexpression in CdLS
Diagnostic Utility of Genome-wide DNA Methylation Testing in Genetically Unsolved Individuals with Suspected Hereditary Conditions.
Conventional genetic testing of individuals with neurodevelopmental presentations and congenital anomalies (ND/CAs), i.e., the analysis of sequence and copy number variants, leaves a substantial proportion of them unexplained. Some of these cases have been shown to result from DNA methylation defects at a single locus (epi-variants), while others can exhibit syndrome-specific DNA methylation changes across multiple loci (epi-signatures). Here, we investigate the clinical diagnostic utility of genome-wide DNA methylation analysis of peripheral blood in unresolved ND/CAs. We generate a computational model enabling concurrent detection of 14 syndromes using DNA methylation data with full accuracy. We demonstrate the ability of this model in resolving 67 individuals with uncertain clinical diagnoses, some of whom had variants of unknown clinical significance (VUS) in the related genes. We show that the provisional diagnoses can be ruled out in many of the case subjects, some of whom are shown by our model to have other diseases initially not considered. By applying this model to a cohort of 965 ND/CA-affected subjects without a previous diagnostic assumption and a separate assessment of rare epi-variants in this cohort, we identify 15 case subjects with syndromic Mendelian disorders, 12 case subjects with imprinting and trinucleotide repeat expansion disorders, as well as 106 case subjects with rare epi-variants, a portion of which involved genes clinically or functionally linked to the subjects\u27 phenotypes. This study demonstrates that genomic DNA methylation analysis can facilitate the molecular diagnosis of unresolved clinical cases and highlights the potential value of epigenomic testing in the routine clinical assessment of ND/CAs
Hematopoietic Stem Cell Transplant for the Treatment of X-MAID
We report outcomes after hematopoietic stem cell transplant for three patients with X-MAID, including 1 patient from the originally described cohort and two brothers with positive TREC newborn screening for SCID who were found to have a T-B-NK+ SCID phenotype attributable to X-linked moesin associated immunodeficiency (X-MAID). A c.511C>T variant in moesin was identified via exome sequencing in the older of these siblings in the setting of low lymphocyte counts and poor proliferative responses consistent with SCID. He received reduced intensity conditioning due to CMV, and was transplanted with a T-depleted haploidentical (maternal) donor. His post-transplant course was complicated by hemolytic anemia, neutropenia, and sepsis. He had poor engraftment, requiring a 2nd transplant. His younger brother presented with the same clinical phenotype and was treated with umbilical cord blood transplant following myeloablative conditioning, has engrafted and is doing well. The third case also presented with severe lymphopenia in infancy, received a matched related bone marrow transplant following myeloablative conditioning, has engrafted and is doing well. These cases represent a novel manifestation of non-radiosensitive X-linked form of T-B-NK+ SCID that is able to be detected by TREC based newborn screening and effectively treated with HCT
Dosage Effects of Cohesin Regulatory Factor PDS5 on Mammalian Development: Implications for Cohesinopathies
Cornelia de Lange syndrome (CdLS), a disorder caused by mutations in cohesion proteins, is characterized by multisystem developmental abnormalities. PDS5, a cohesion protein, is important for proper chromosome segregation in lower organisms and has two homologues in vertebrates (PDS5A and PDS5B). Pds5B mutant mice have developmental abnormalities resembling CdLS; however the role of Pds5A in mammals and the association of PDS5 proteins with CdLS are unknown. To delineate genetic interactions between Pds5A and Pds5B and explore mechanisms underlying phenotypic variability, we generated Pds5A-deficient mice. Curiously, these mice exhibit multiple abnormalities that were previously observed in Pds5B-deficient mice, including cleft palate, skeletal patterning defects, growth retardation, congenital heart defects and delayed migration of enteric neuron precursors. They also frequently display renal agenesis, an abnormality not observed in Pds5B−/− mice. While Pds5A−/− and Pds5B−/− mice die at birth, embryos harboring 3 mutant Pds5 alleles die between E11.5 and E12.5 most likely of heart failure, indicating that total Pds5 gene dosage is critical for normal development. In addition, characterization of these compound homozygous-heterozygous mice revealed a severe abnormality in lens formation that does not occur in either Pds5A−/− or Pds5B−/− mice. We further identified a functional missense mutation (R1292Q) in the PDS5B DNA-binding domain in a familial case of CdLS, in which affected individuals also develop megacolon. This study shows that PDS5A and PDS5B functions other than those involving chromosomal dynamics are important for normal development, highlights the sensitivity of key developmental processes on PDS5 signaling, and provides mechanistic insights into how PDS5 mutations may lead to CdLS
- …