2,324 research outputs found
Visibility Representations of Boxes in 2.5 Dimensions
We initiate the study of 2.5D box visibility representations (2.5D-BR) where
vertices are mapped to 3D boxes having the bottom face in the plane and
edges are unobstructed lines of sight parallel to the - or -axis. We
prove that: Every complete bipartite graph admits a 2.5D-BR; The
complete graph admits a 2.5D-BR if and only if ; Every
graph with pathwidth at most admits a 2.5D-BR, which can be computed in
linear time. We then turn our attention to 2.5D grid box representations
(2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit
square at integer coordinates. We show that an -vertex graph that admits a
2.5D-GBR has at most edges and this bound is tight. Finally,
we prove that deciding whether a given graph admits a 2.5D-GBR with a given
footprint is NP-complete. The footprint of a 2.5D-BR is the set of
bottom faces of the boxes in .Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Dust-free quasars in the early Universe
The most distant quasars known, at redshifts z=6, generally have properties
indistinguishable from those of lower-redshift quasars in the rest-frame
ultraviolet/optical and X-ray bands. This puzzling result suggests that these
distant quasars are evolved objects even though the Universe was only seven per
cent of its current age at these redshifts. Recently one z=6 quasar was shown
not to have any detectable emission from hot dust, but it was unclear whether
that indicated different hot-dust properties at high redshift or if it is
simply an outlier. Here we report the discovery of a second quasar without
hot-dust emission in a sample of 21 z=6 quasars. Such apparently hot-dust-free
quasars have no counterparts at low redshift. Moreover, we demonstrate that the
hot-dust abundance in the 21 quasars builds up in tandem with the growth of the
central black hole, whereas at low redshift it is almost independent of the
black hole mass. Thus z=6 quasars are indeed at an early evolutionary stage,
with rapid mass accretion and dust formation. The two hot-dust-free quasars are
likely to be first-generation quasars born in dust-free environments and are
too young to have formed a detectable amount of hot dust around them.Comment: To be published in Nature on the 18 March 2010
Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies
Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development
Peroxisome Proliferator-Activated Receptor alpha (PPAR alpha) down-regulation in cystic fibrosis lymphocytes
Background: PPARs exhibit anti-inflammatory capacities and are potential modulators of the inflammatory response. We hypothesized that their expression and/or function may be altered in cystic fibrosis (CF), a disorder characterized by an excessive host inflammatory response.
Methods: PPARα, β and γ mRNA levels were measured in peripheral blood cells of CF patients and healthy subjects via RT-PCR. PPARα protein expression and subcellular localization was determined via western blot and immunofluorescence, respectively. The activity of PPARα was analyzed by gel shift assay.
Results: In lymphocytes, the expression of PPARα mRNA, but not of PPARβ, was reduced (-37%; p < 0.002) in CF patients compared with healthy persons and was therefore further analyzed. A similar reduction of PPARα was observed at protein level (-26%; p < 0.05). The transcription factor was mainly expressed in the cytosol of lymphocytes, with low expression in the nucleus. Moreover, DNA binding activity of the transcription factor was 36% less in lymphocytes of patients (p < 0.01). For PPARα and PPARβ mRNA expression in monocytes and neutrophils, no significant differences were observed between CF patients and healthy persons. In all cells, PPARγ mRNA levels were below the detection limit.
Conclusion: Lymphocytes are important regulators of the inflammatory response by releasing cytokines and antibodies. The diminished lymphocytic expression and activity of PPARα may therefore contribute to the inflammatory processes that are observed in CF
Laser feedback interferometry with THz QCLs: A new technology for imaging and materials analysis
Considerable interest exists for sensing and imaging technologies in the terahertz (THz) spectral range, in particular for the interrogation of materials of an organic or biological nature. Development in THz quantum cascade lasers is seeing higher operating temperatures and peak output powers in pulsed mode, accentuating their place as the preferred source of coherent THz frequency radiation. Technological development of interferometric sensing schemes continues to take advantage of practical improvements in THz quantum cascade lasers. In this Summary, we give a brief overview of some recent developments in this regard
Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China.
A recent genome-wide association study of lung cancer among never-smoking females in Asia demonstrated that the rs2736100 polymorphism in the TERT-CLPTM1L locus on chromosome 5p15.33 was strongly and significantly associated with risk of adenocarcinoma of the lung. The telomerase gene TERT is a reverse transcriptase that is critical for telomere replication and stabilization by controlling telomere length. We previously found that longer telomere length measured in peripheral white blood cell DNA was associated with increased risk of lung cancer in a prospective cohort study of smoking males in Finland. To follow up on this finding, we carried out a nested case-control study of 215 female lung cancer cases and 215 female controls, 94% of whom were never-smokers, in the prospective Shanghai Women's Health Study cohort. There was a dose-response relationship between tertiles of telomere length and risk of lung cancer (odds ratio (OR), 95% confidence interval [CI]: 1.0, 1.4 [0.8-2.5], and 2.2 [1.2-4.0], respectively; P trend = 0.003). Further, the association was unchanged by the length of time from blood collection to case diagnosis. In addition, the rs2736100 G allele, which we previously have shown to be associated with risk of lung cancer in this cohort, was significantly associated with longer telomere length in these same study subjects (P trend = 0.030). Our findings suggest that individuals with longer telomere length in peripheral white blood cells may have an increased risk of lung cancer, but require replication in additional prospective cohorts and populations
Origin of terminal voltage variations due to self-mixing in a terahertz frequency quantum cascade laser
The use of quantum cascade lasers (QCLs) for laser feedback interferometry (LFI) has received significant attention since it enables a wide range of sensing applications without requiring a separate detector, and hence simplifies experimental apparatus [1]. LFA (based on the self-mixing effect) refers to the partial reinjection of the radiation emitted from a laser after reflection from a target; the injected radiation field then interacts with the intra-cavity field causing measurable variations of the QCL terminal voltage. The theory of LFI with conventional laser sources is well studied and explained by the Lang–Kobayashi model [2, 3]. However, while this enables the dynamic state populations and light interaction to be modelled, a linear relationship between the change in cavity light power, ∆P, and terminal voltage variation is commonly assumed, i.e. VSM ∝ ∆P [4, 5]. This is not strictly applicable to QCL structures since carrier transport is dominated by the mechanisms of electron subband alignment, intersubband scattering and photon driven transport between subbands with energy separations that change with applied bias (terminal voltage). We present experimental results of a QCL which departs significantly from this assumed linear behavior. We observe strong enhancement of the self-mixing signal in regions where the local gradient of the current-voltage (I–V) curve increases. We explain the origin of this signal using an extended density matrix (DM) approach [6] which accounts for coherent transport and interaction of the optical light field with the active region. The model is used to calculate the I–V characteristics of a bound-to-continuum (BTC) terahertz (THz) QCL and predict the effect of light variation on terminal voltage at a fixed drive current. This approach is shown to predict the experimental signal with good agreement
Electron quantum metamaterials in van der Waals heterostructures
In recent decades, scientists have developed the means to engineer synthetic
periodic arrays with feature sizes below the wavelength of light. When such
features are appropriately structured, electromagnetic radiation can be
manipulated in unusual ways, resulting in optical metamaterials whose function
is directly controlled through nanoscale structure. Nature, too, has adopted
such techniques -- for example in the unique coloring of butterfly wings -- to
manipulate photons as they propagate through nanoscale periodic assemblies. In
this Perspective, we highlight the intriguing potential of designer
sub-electron wavelength (as well as wavelength-scale) structuring of electronic
matter, which affords a new range of synthetic quantum metamaterials with
unconventional responses. Driven by experimental developments in stacking
atomically layered heterostructures -- e.g., mechanical pick-up/transfer
assembly -- atomic scale registrations and structures can be readily tuned over
distances smaller than characteristic electronic length-scales (such as
electron wavelength, screening length, and electron mean free path). Yet
electronic metamaterials promise far richer categories of behavior than those
found in conventional optical metamaterial technologies. This is because unlike
photons that scarcely interact with each other, electrons in subwavelength
structured metamaterials are charged, and strongly interact. As a result, an
enormous variety of emergent phenomena can be expected, and radically new
classes of interacting quantum metamaterials designed
Use of ultrasound by emergency medical services: a review
Prehospital ultrasound has been deployed in certain areas of the USA and Europe. Physicians, emergency medical technicians, and flight nurses have utilized a variety of medical and trauma ultrasound assessments to impact patient care in the field. The goal of this review is to summarize the literature on emergency medical services (EMS) use of ultrasound to more clearly define the potential utility of this technology for prehospital providers
- …