2 research outputs found

    Cerium dioxide nanoparticles exacerbate house dust mite induced type II airway inflammation

    Get PDF
    Background Nanomaterial inhalation represents a potential hazard for respiratory conditions such as asthma. Cerium dioxide nanoparticles (CeO2NPs) have the ability to modify disease outcome but have not been investigated for their effect on models of asthma and inflammatory lung disease. The aim of this study was to examine the impact of CeO2NPs in a house dust mite (HDM) induced murine model of asthma. Results Repeated intranasal instillation of CeO2NPs in the presence of HDM caused the induction of a type II inflammatory response, characterised by increased bronchoalveolar lavage eosinophils, mast cells, total plasma IgE and goblet cell metaplasia. This was accompanied by increases in IL-4, CCL11 and MCPT1 gene expression together with increases in the mucin and inflammatory regulators CLCA1 and SLC26A4. CLCA1 and SLC26A4 were also induced by CeO2NPs + HDM co-exposure in air liquid interface cultures of human primary bronchial epithelial cells. HDM induced airway hyperresponsiveness and airway remodelling in mice were not altered with CeO2NPs co-exposure. Repeated HMD instillations followed by a single exposure to CeO2NPs failed to produce changes in type II inflammatory endpoints but did result in alterations in the neutrophil marker CD177. Treatment of mice with CeO2NPs in the absence of HDM did not have any significant effects. RNA-SEQ was used to explore early effects 24 h after single treatment exposures. Changes in SAA3 expression paralleled increased neutrophil BAL levels, while no changes in eosinophil or lymphocyte levels were observed. HDM resulted in a strong induction of type I interferon and IRF3 dependent gene expression, which was inhibited with CeO2NPs co-exposure. Changes in the expression of genes including CCL20, CXCL10, NLRC5, IRF7 and CLEC10A suggest regulation of dendritic cells, macrophage functionality and IRF3 modulation as key early events in how CeO2NPs may guide pulmonary responses to HDM towards type II inflammation. Conclusions CeO2NPs were observed to modulate the murine pulmonary response to house dust mite allergen exposure towards a type II inflammatory environment. As this type of response is present within asthmatic endotypes this finding may have implications for how occupational or incidental exposure to CeO2NPs should be considered for those susceptible to disease

    ERS International Congress 2022: highlights from the Basic and Translational Science Assembly.

    No full text
    In this review, the Basic and Translational Science Assembly of the European Respiratory Society provides an overview of the 2022 International Congress highlights. We discuss the consequences of respiratory events from birth until old age regarding climate change related alterations in air quality due to pollution caused by increased ozone, pollen, wildfires and fuel combustion as well as the increasing presence of microplastic and microfibres. Early life events such as the effect of hyperoxia in the context of bronchopulmonary dysplasia and crucial effects of the intrauterine environment in the context of pre-eclampsia were discussed. The Human Lung Cell Atlas (HLCA) was put forward as a new point of reference for healthy human lungs. The combination of single-cell RNA sequencing and spatial data in the HLCA has enabled the discovery of new cell types/states and niches, and served as a platform that facilitates further investigation of mechanistic perturbations. The role of cell death modalities in regulating the onset and progression of chronic lung diseases and its potential as a therapeutic target was also discussed. Translational studies identified novel therapeutic targets and immunoregulatory mechanisms in asthma. Lastly, it was highlighted that the choice of regenerative therapy depends on disease severity, ranging from transplantation to cell therapies and regenerative pharmacology
    corecore