625 research outputs found

    Twistable electronics with dynamically rotatable heterostructures

    Get PDF
    The electronic properties of two-dimensional materials and their heterostructures can be dramatically altered by varying the relative angle between the layers. This makes it theoretically possible to realize a new class of twistable electronics in which device properties can be manipulated on-demand by simply rotating the structure. Here, we demonstrate a new device architecture in which a layered heterostructure can be dynamically twisted, in situ. We study graphene encapsulated by boron nitride where at small rotation angles the device characteristics are dominated by coupling to a large wavelength Moir\'e superlattice. The ability to investigate arbitrary rotation angle in a single device reveals new features in the optical, mechanical and electronic response in this system. Our results establish the capability to fabricate twistable electronic devices with dynamically tunable properties

    High quality electrostatically defined hall bars in monolayer graphene

    Get PDF
    Realizing graphene's promise as an atomically thin and tunable platform for fundamental studies and future applications in quantum transport requires the ability to electrostatically define the geometry of the structure and control the carrier concentration, without compromising the quality of the system. Here, we demonstrate the working principle of a new generation of high quality gate defined graphene samples, where the challenge of doing so in a gapless semiconductor is overcome by using the ν=0\nu=0 insulating state, which emerges at modest applied magnetic fields. In order to verify that the quality of our devices is not compromised by the presence of multiple gates we compare the electronic transport response of different sample geometries, paying close attention to fragile quantum states, such as the fractional quantum Hall (FQH) states, that are highly susceptible to disorder. The ability to define local depletion regions without compromising device quality establishes a new approach towards structuring graphene-based quantum transport devices

    Competing Fractional Quantum Hall and Electron Solid Phases in Graphene

    Full text link
    We report experimental observation of the reentrant integer quantum Hall effect in graphene, appearing in the N==2 Landau level. Similar to high-mobility GaAs/AlGaAs heterostructures, the effect is due to a competition between incompressible fractional quantum Hall states, and electron solid phases. The tunability of graphene allows us to measure the BB-TT phase diagram of the electron-solid phase. The hierarchy of reentrant states suggest spin and valley degrees of freedom play a role in determining the ground state energy. We find that the melting temperature scales with magnetic field, and construct a phase diagram of the electron liquid-solid transition

    Accommodating quality and service improvement research within existing ethical principles

    Get PDF
    Funds were provided by a Canadian Institute of Health Research grant (Nominated PI: Monica Taljaard, PJT – 153045). Funds were also generously provided by Charles Weijer, who is funded by a Tier 1 Canadian Research Chair.Peer reviewedPublisher PD
    corecore