3,316 research outputs found

    Superlattice Magnetophonon Resonances in Strongly Coupled InAs/GaSb Superlattices

    Full text link
    We report an experimental study of miniband magnetoconduction in semiconducting InAs/GaSb superlattices. For samples with miniband widths below the longitudinal optical phonon energy we identify a new superlattice magnetophonon resonance (SLMPR) caused by resonant scattering of electrons across the mini-Brillouin zone. This new resonant feature arises directly from the drift velocity characteristics of the superlattice dispersion and total magnetic quantisation of the superlattice Landau level minibands.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Inter-band magnetoplasmons in mono- and bi-layer graphene

    Full text link
    Collective excitations spectrum of Dirac electrons in mono and bilayer graphene in the presence of a uniform magnetic field is investigated. Analytical results for inter-Landau band plasmon spectrum within the self-consistent-field approach are obtained. SdH type oscillations that are a monotonic function of the magnetic field are observed in the plasmon spectrum of both mono- and bi-layer graphene systems. The results presented are also compared with those obtained in conventional 2DEG. The chiral nature of the quasiparticles in mono and bilayer graphene system results in the observation of π\pi and 2π2\pi Berry's phase in the SdH- type oscillations in the plasmon spectrum.Comment: 9 pages, 2 figure

    Gap opening in the zeroth Landau level in gapped graphene: Pseudo-Zeeman splitting in an angular magnetic field

    Full text link
    We present a theoretical study of gap opening in the zeroth Landau level in gapped graphene as a result of pseudo-Zeeman interaction. The applied magnetic field couples with the valley pseudospin degree of freedom of the charge carriers leading to the pseudo-Zeeman interaction. To investigate its role in transport at the Charge Neutrality Point (CNP), we study the integer quantum Hall effect (QHE) in gapped graphene in an angular magnetic field in the presence of pseudo-Zeeman interaction. Analytical expressions are derived for the Hall conductivity using Kubo-Greenwood formula. We also determine the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that pseudo-Zeeman splitting leads to a minimum in the collisional conductivity at high magnetic fields and a zero plateau in the Hall conductivity. Evidence for activated transport at CNP is found from the temperature dependence of the collisional conductivity.Comment: 20 pages, 4 figures, Accepted in J. Phys. Condensed matte

    A model of hyphal tip growth involving microtubule-based transport

    Full text link
    We propose a simple model for mass transport within a fungal hypha and its subsequent growth. Inspired by the role of microtubule-transported vesicles, we embody the internal dynamics of mass inside a hypha with mutually excluding particles progressing stochastically along a growing one-dimensional lattice. The connection between long range transport of materials for growth, and the resulting extension of the hyphal tip has not previously been addressed in the modelling literature. We derive and analyse mean-field equations for the model and present a phase diagram of its steady state behaviour, which we compare to simulations. We discuss our results in the context of the filamentous fungus, Neurospora crassa.Comment: 5 pages, 5 figure

    Cross-shell excitation in two-proton knockout: Structure of 52^{52}Ca

    Get PDF
    The two-proton knockout reaction 9^9Be(54^{54}Ti,52^{52}Ca+γ + \gamma) has been studied at 72 MeV/nucleon. Besides the strong feeding of the 52^{52}Ca ground state, the only other sizeable cross section proceeds to a 3−^- level at 3.9 MeV. There is no measurable direct yield to the first excited 2+^+ state at 2.6 MeV. The results illustrate the potential of such direct reactions for exploring cross-shell proton excitations in neutron-rich nuclei and confirms the doubly-magic nature of 52^{52}Ca

    Spectroscopy of the odd-odd fp-shell nucleus 52Sc from secondary fragmentation

    Get PDF
    The odd-odd fp-shell nucleus 52Sc was investigated using in-beam gamma-ray spectroscopy following secondary fragmentation of a 55V and 57Cr cocktail beam. Aside from the known gamma-ray transition at 674(5)keV, a new decay at E_gamma=212(3) keV was observed. It is attributed to the depopulation of a low-lying excited level. This new state is discussed in the framework of shell-model calculations with the GXPF1, GXPF1A, and KB3G effective interactions. These calculations are found to be fairly robust for the low-lying level scheme of 52Sc irrespective of the choice of the effective interaction. In addition, the frequency of spin values predicted by the shell model is successfully modeled by a spin distribution formulated in a statistical approach with an empirical, energy-independent spin-cutoff parameter.Comment: accepted for publication in PR

    Sexual behaviour and smoking as determinants of cervical HPV infection and of CIN3 among those infected: a case–control study nested within the Manchester cohort

    Get PDF
    To distinguish risk factors for acquisition of cervical human papillomavirus (HPV) infection from the determinants of neoplasia among infected individuals we have conducted a three-arm case-control study nested within a large population-based cohort of women (the Manchester cohort) screened for HPV at entry using L1 consensus primer PCR. The study includes 181 HPV-positive controls who did not develop high-grade cervical intraepithelial neoplasia (CIN3) during follow-up, 203 HPV-negative controls, and 199 HPV-positive cases with histologically confirmed CIN3. Detailed information on sexual, reproductive and gynaecological history, oral contraceptive use and smoking was obtained at face-to-face interview. There was a striking division between risk factors for infection and those predictive of disease. Comparing the HPV-positive against the HPV-negative controls, the only risk factors for infection were number of sexual partners (OR for six or more = 3.89; 95% Cl = 1.99–7.62), a relatively recent new sexual relationship (OR for a new partner within the previous 2 years = 4.17; 95% Cl = 2.13–8.33), and a history of previous miscarriage (OR = 2.59; 95% Cl = 1.28–5.21). The determinants of CIN3 among infected women were, in contrast, early age at first intercourse (OR for 16 years old or less = 3.23; 95% Cl = 1.33–7.69), a long time since starting a new sexual relationship (OR for 6 years or more = 4.94; 95% Cl = 2.51–9.71), and cigarette smoking, with strong evidence for a dose– response (OR for current smoking habit 20+ per day = 2.57; 95% Cl = 1.49–4.45). Oral contraceptive use was not significantly associated with either HPV infection or CIN3. © 2000 Cancer Research Campaign http://www.bjcancer.co

    One-neutron knockout in the vicinity of the N=32 sub-shell closure: 9Be(57Cr,56Cr+ gamma)X

    Get PDF
    The one-neutron knockout reaction 9Be(57Cr,56Cr + gamma)X has been measured in inverse kinematics with an intermediate-energy beam. Cross sections to individual states in 56Cr were partially untangled through the detection of the characteristic gamma-ray transitions in coincidence with the reaction residues. The experimental inclusive longitudinal momentum distribution and the yields to individual states are compared to calculations that combine spectroscopic factors from the full fp shell model and nucleon-removal cross sections computed in a few-body eikonal approach.Comment: PRC, in pres

    Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy

    Full text link
    We report a study of the cyclotron resonance (CR) transitions to and from the unusual n=0n=0 Landau level (LL) in monolayer graphene. Unexpectedly, we find the CR transition energy exhibits large (up to 10%) and non-monotonic shifts as a function of the LL filling factor, with the energy being largest at half-filling of the n=0n=0 level. The magnitude of these shifts, and their magnetic field dependence, suggests that an interaction-enhanced energy gap opens in the n=0n=0 level at high magnetic fields. Such interaction effects normally have limited impact on the CR due to Kohn's theorem [W. Kohn, Phys. Rev. {\bf 123}, 1242 (1961)], which does not apply in graphene as a consequence of the underlying linear band structure.Comment: 4 pages, 4 figures. Version 2, edited for publication. Includes a number of edits for clarity; also added a paragraph contrasting our work w/ previous CR expts. in 2D Si and GaA
    • …
    corecore