2,522 research outputs found
Dynamical phase transition of a 1D transport process including death
Motivated by biological aspects related to fungus growth, we consider the
competition of growth and corrosion. We study a modification of the totally
asymmetric exclusion process, including the probabilities of injection
and death of the last particle . The system presents a phase transition
at , where the average position of the last particle
grows as . For , a non equilibrium stationary state
exists while for the asymptotic state presents a low density
and max current phases. We discuss the scaling of the density and current
profiles for parallel and sequential updates.Comment: 4 pages, 5 figure
Quantitative resistance can lead to evolutionary changes in traits not targeted by the resistance QTLs.
This paper addresses the general concern in plant pathology that the introduction of quantitative resistance in the landscape can lead to increased pathogenicity. Hereto, we study the hypothetical case of a quantitative trait loci (QTL) acting on pathogen spore production per unit lesion area. To regain its original fitness, the pathogen can break the QTL, restoring its spore production capacity leading to an increased spore production per lesion. Or alternatively, it can increase its lesion size, also leading to an increased spore production per lesion. A data analysis shows that spore production per lesion (affected by the resistance QTL) and lesion size (not targeted by the QTL) are positively correlated traits, suggesting that a change in magnitude of a trait not targeted by the QTL (lesion size) might indirectly affect the targeted trait (spore production per lesion). Secondly, we model the effect of pathogen adaptation towards increased lesion size and analyse its consequences for spore production per lesion. The model calculations show that when the pathogen is unable to overcome the resistance associated QTL, it may compensate for its reduced fitness by indirect selection for increased pathogenicity on both the resistant and susceptible cultivar, but whereby the QTLs remain effective.Rothamsted Research receives support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the United Kingdom. F v d Berg was funded by an INRA-BBSRC funded project entitled ‘Epidemiological and evolutionary models for invasion and persistence of disease’. CAG gratefully acknowledges support of a BBSRC Professional Fellowship
Simplifying ARM concurrency: Multicopy-atomic axiomatic and operational models for ARMv8
ARM has a relaxed memory model, previously specified in informal prose for ARMv7 and ARMv8. Over time, and partly due to work building formal semantics for ARM concurrency, it has become clear that some of the complexity of the model is not justified by the potential benefits. In particular, the model was originally
non-multicopy-atomic
: writes could become visible to some other threads before becoming visible to all — but this has not been exploited in production implementations, the corresponding potential hardware optimisations are thought to have insufficient benefits in the ARM context, and it gives rise to subtle complications when combined with other ARMv8 features. The ARMv8 architecture has therefore been revised: it now has a multicopy-atomic model. It has also been simplified in other respects, including more straightforward notions of dependency, and the architecture now includes a formal concurrency model.
In this paper we detail these changes and discuss their motivation. We define two formal concurrency models: an operational one, simplifying the Flowing model of Flur et al., and the axiomatic model of the revised ARMv8 specification. The models were developed by an academic group and by ARM staff, respectively, and this extended collaboration partly motivated the above changes. We prove the equivalence of the two models. The operational model is integrated into an executable exploration tool with new web interface, demonstrated by exhaustively checking the possible behaviours of a loop-unrolled version of a Linux kernel lock implementation, a previously known bug due to unprevented speculation, and a fixed version.</jats:p
Gap opening in the zeroth Landau level in gapped graphene: Pseudo-Zeeman splitting in an angular magnetic field
We present a theoretical study of gap opening in the zeroth Landau level in
gapped graphene as a result of pseudo-Zeeman interaction. The applied magnetic
field couples with the valley pseudospin degree of freedom of the charge
carriers leading to the pseudo-Zeeman interaction. To investigate its role in
transport at the Charge Neutrality Point (CNP), we study the integer quantum
Hall effect (QHE) in gapped graphene in an angular magnetic field in the
presence of pseudo-Zeeman interaction. Analytical expressions are derived for
the Hall conductivity using Kubo-Greenwood formula. We also determine the
longitudinal conductivity for elastic impurity scattering in the first Born
approximation. We show that pseudo-Zeeman splitting leads to a minimum in the
collisional conductivity at high magnetic fields and a zero plateau in the Hall
conductivity. Evidence for activated transport at CNP is found from the
temperature dependence of the collisional conductivity.Comment: 20 pages, 4 figures, Accepted in J. Phys. Condensed matte
A model of hyphal tip growth involving microtubule-based transport
We propose a simple model for mass transport within a fungal hypha and its
subsequent growth. Inspired by the role of microtubule-transported vesicles, we
embody the internal dynamics of mass inside a hypha with mutually excluding
particles progressing stochastically along a growing one-dimensional lattice.
The connection between long range transport of materials for growth, and the
resulting extension of the hyphal tip has not previously been addressed in the
modelling literature. We derive and analyse mean-field equations for the model
and present a phase diagram of its steady state behaviour, which we compare to
simulations. We discuss our results in the context of the filamentous fungus,
Neurospora crassa.Comment: 5 pages, 5 figure
Four new T dwarfs identified in PanSTARRS 1 commissioning data
A complete well-defined sample of ultracool dwarfs is one of the key science
programs of the Pan-STARRS 1 optical survey telescope (PS1). Here we combine
PS1 commissioning data with 2MASS to conduct a proper motion search
(0.1--2.0\arcsec/yr) for nearby T dwarfs, using optical+near-IR colors to
select objects for spectroscopic followup. The addition of sensitive far-red
optical imaging from PS1 enables discovery of nearby ultracool dwarfs that
cannot be identified from 2MASS data alone. We have searched 3700 sq. deg. of
PS1 y-band (0.95--1.03 um) data to y19.5 mag (AB) and J16.5
mag (Vega) and discovered four previously unknown bright T dwarfs. Three of the
objects (with spectral types T1.5, T2 and T3.5) have photometric distances
within 25 pc and were missed by previous 2MASS searches due to more restrictive
color selection criteria. The fourth object (spectral type T4.5) is more
distant than 25 pc and is only a single-band detection in 2MASS. We also
examine the potential for completing the census of nearby ultracool objects
with the PS1 3 survey.Comment: 25 pages, 8 figures, 5 table, AJ accepted, updated to comply with
Pan-STARRS1 naming conventio
Diversity, competition, extinction: the ecophysics of language change
As early indicated by Charles Darwin, languages behave and change very much
like living species. They display high diversity, differentiate in space and
time, emerge and disappear. A large body of literature has explored the role of
information exchanges and communicative constraints in groups of agents under
selective scenarios. These models have been very helpful in providing a
rationale on how complex forms of communication emerge under evolutionary
pressures. However, other patterns of large-scale organization can be described
using mathematical methods ignoring communicative traits. These approaches
consider shorter time scales and have been developed by exploiting both
theoretical ecology and statistical physics methods. The models are reviewed
here and include extinction, invasion, origination, spatial organization,
coexistence and diversity as key concepts and are very simple in their defining
rules. Such simplicity is used in order to catch the most fundamental laws of
organization and those universal ingredients responsible for qualitative
traits. The similarities between observed and predicted patterns indicate that
an ecological theory of language is emerging, supporting (on a quantitative
basis) its ecological nature, although key differences are also present. Here
we critically review some recent advances lying and outline their implications
and limitations as well as open problems for future research.Comment: 17 Pages. A review on current models from statistical Physics and
Theoretical Ecology applied to study language dynamic
Assessing direct contributions of morphological awareness and prosodic sensitivity to children’s word reading and reading comprehension
We examined the independent contributions of prosodic sensitivity and morphological awareness to word reading, text reading accuracy, and reading comprehension. We did so in a longitudinal study of English-speaking children (N = 70). At 5 to 7 years of age, children completed the metalinguistic measures along with control measures of phonological awareness and vocabulary. Children completed the reading measures two years later. Morphological awareness, but not prosodic sensitivity made a significant independent contribution to word reading, text reading accuracy and reading comprehension. The effects of morphological awareness on reading comprehension remained after controls for word reading. These results suggest that morphological awareness needs to be considered seriously in models of reading development and that prosodic sensitivity might have primarily indirect relations to reading outcomes.
Keywords: Morphological Awareness; Prosody; Word Reading; Reading Comprehension
- …