1 research outputs found
ImageJ2: ImageJ for the next generation of scientific image data
ImageJ is an image analysis program extensively used in the biological
sciences and beyond. Due to its ease of use, recordable macro language, and
extensible plug-in architecture, ImageJ enjoys contributions from
non-programmers, amateur programmers, and professional developers alike.
Enabling such a diversity of contributors has resulted in a large community
that spans the biological and physical sciences. However, a rapidly growing
user base, diverging plugin suites, and technical limitations have revealed a
clear need for a concerted software engineering effort to support emerging
imaging paradigms, to ensure the software's ability to handle the requirements
of modern science. Due to these new and emerging challenges in scientific
imaging, ImageJ is at a critical development crossroads.
We present ImageJ2, a total redesign of ImageJ offering a host of new
functionality. It separates concerns, fully decoupling the data model from the
user interface. It emphasizes integration with external applications to
maximize interoperability. Its robust new plugin framework allows everything
from image formats, to scripting languages, to visualization to be extended by
the community. The redesigned data model supports arbitrarily large,
N-dimensional datasets, which are increasingly common in modern image
acquisition. Despite the scope of these changes, backwards compatibility is
maintained such that this new functionality can be seamlessly integrated with
the classic ImageJ interface, allowing users and developers to migrate to these
new methods at their own pace. ImageJ2 provides a framework engineered for
flexibility, intended to support these requirements as well as accommodate
future needs