28 research outputs found

    Validating quantum-supremacy experiments with exact and fast tensor network contraction

    Full text link
    The quantum circuits that declare quantum supremacy, such as Google Sycamore [Nature \textbf{574}, 505 (2019)], raises a paradox in building reliable result references. While simulation on traditional computers seems the sole way to provide reliable verification, the required run time is doomed with an exponentially-increasing compute complexity. To find a way to validate current ``quantum-supremacy" circuits with more than 5050 qubits, we propose a simulation method that exploits the ``classical advantage" (the inherent ``store-and-compute" operation mode of von Neumann machines) of current supercomputers, and computes uncorrelated amplitudes of a random quantum circuit with an optimal reuse of the intermediate results and a minimal memory overhead throughout the process. Such a reuse strategy reduces the original linear scaling of the total compute cost against the number of amplitudes to a sublinear pattern, with greater reduction for more amplitudes. Based on a well-optimized implementation of this method on a new-generation Sunway supercomputer, we directly verify Sycamore by computing three million exact amplitudes for the experimentally generated bitstrings, obtaining an XEB fidelity of 0.191%0.191\% which closely matches the estimated value of 0.224%0.224\%. Our computation scales up to 41,932,80041,932,800 cores with a sustained single-precision performance of 84.884.8 Pflops, which is accomplished within 8.58.5 days. Our method has a far-reaching impact in solving quantum many-body problems, statistical problems as well as combinatorial optimization problems where one often needs to contract many tensor networks which share a significant portion of tensors in common.Comment: 7 pages, 4 figures, comments are welcome

    A new implicit factored scheme for the compressible Navier-Stokes equations

    No full text

    Scheme construction with numerical flux residual correction (NFRC) and group velocity control (GVC)

    No full text
    For simulating multi-scale complex flow fields like turbulent flows, the high order accurate schemes are preferred. In this paper, a scheme construction with numerical flux residual correction (NFRC) is presented. Any order accurate difference approximation can be obtained with the NFRC. To improve the resolution of the shock, the constructed schemes are modified with group velocity control (GVC) and weighted group velocity control (WGVC). The method of scheme construction is simple, and it is used to solve practical problems

    directnumericalsimulationofaspatiallyevolvingsupersonicturbulentboundarylayeratma6

    No full text
    Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at free-stream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the convection terms of Navier-Stokes equations, and fine mesh is adopted to minimize numerical dissipation. Compressibilty effects on the near-wall turbulent kinetic energy budget are studied. The cross-stream extended self-similarity and scaling exponents including the near-wall region are studied. In high Mach number flows, the coherence vortex structures are arranged to be smoother and streamwised, and the hair-pin vortices are less likely to occur
    corecore