214 research outputs found
Benzyne in V4334 Sqr: A Quest for the Ring with SOFIA/EXES
Large aromatic molecules are ubiquitous in both circumstellar and interstellar environments. Detection of small aromatic molecules, such as benzene (C6H6) and benzyne (C6H4), are rare in astrophysical environments. Detection of such species will have major implications for our understanding of the astrochemistry involved in the formation of the molecules necessary for life, including modeling the chemical pathways to the formation of larger hydrocarbon molecules. We conducted a search for the infrared 18 μm spectral signature of benzyne in V4334 Sgr with the Stratospheric Observatory for Infrared Astronomy (SOFIA)/Echelon-Cross-Echelle Spectrograph (EXES) finding no evidence for a feature at the sensitivity of our observations
Modeling the quantum evolution of the universe through classical matter
It is well known that the canonical quantization of the
Friedmann-Lema\^itre-Robertson-Walker (FLRW) filled with a perfect fluid leads
to nonsingular universes which, for later times, behave as their classical
counterpart. This means that the expectation value of the scale factor
never vanishes and, as , we recover the classical expression for
the scale factor. In this paper, we show that such universes can be reproduced
by classical cosmology given that the universe is filled with an exotic matter.
In the case of a perfect fluid, we find an implicit equation of state (EoS). We
then show that this single fluid with an implict EoS is equivalent to two
non-interacting fluids, one of them representing stiff matter with negative
energy density. In the case of two non-interacting scalar fields, one of them
of the phantom type, we find their potential energy. In both cases we find that
quantum mechanics changes completely the configuration of matter for small
values of time, by adding a fluid or a scalar field with negative energy
density. As time passes, the density of negative energy decreases and we
recover the ordinary content of the classical universe. The more the initial
wave function of the universe is concentrated around the classical big bang
singularity, the more it is necessary to add negative energy, since this type
of energy will be responsible for the removal of the classical singularity.Comment: updated version as accepted by Gen. Relativ. Gravi
Quantum systems in weak gravitational fields
Fully covariant wave equations predict the existence of a class of
inertial-gravitational effects that can be tested experimentally. In these
equations inertia and gravity appear as external classical fields, but, by
conforming to general relativity, provide very valuable information on how
Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the
International School of Cosmology and Gravitation "Advances in the interplay
between quantum and gravity physics" edited by V. De Sabbata and A.
Zheltukhin, Kluwer Academic Publishers, Dordrech
The motion of point particles in curved spacetime
This review is concerned with the motion of a point scalar charge, a point
electric charge, and a point mass in a specified background spacetime. In each
of the three cases the particle produces a field that behaves as outgoing
radiation in the wave zone, and therefore removes energy from the particle. In
the near zone the field acts on the particle and gives rise to a self-force
that prevents the particle from moving on a geodesic of the background
spacetime. The field's action on the particle is difficult to calculate because
of its singular nature: the field diverges at the position of the particle. But
it is possible to isolate the field's singular part and show that it exerts no
force on the particle -- its only effect is to contribute to the particle's
inertia. What remains after subtraction is a smooth field that is fully
responsible for the self-force. Because this field satisfies a homogeneous wave
equation, it can be thought of as a free (radiative) field that interacts with
the particle; it is this interaction that gives rise to the self-force. The
mathematical tools required to derive the equations of motion of a point scalar
charge, a point electric charge, and a point mass in a specified background
spacetime are developed here from scratch. The review begins with a discussion
of the basic theory of bitensors (part I). It then applies the theory to the
construction of convenient coordinate systems to chart a neighbourhood of the
particle's word line (part II). It continues with a thorough discussion of
Green's functions in curved spacetime (part III). The review concludes with a
detailed derivation of each of the three equations of motion (part IV).Comment: LaTeX2e, 116 pages, 10 figures. This is the final version, as it will
appear in Living Reviews in Relativit
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Quantization of Midisuperspace Models
We give a comprehensive review of the quantization of midisuperspace models.
Though the main focus of the paper is on quantum aspects, we also provide an
introduction to several classical points related to the definition of these
models. We cover some important issues, in particular, the use of the principle
of symmetric criticality as a very useful tool to obtain the required
Hamiltonian formulations. Two main types of reductions are discussed: those
involving metrics with two Killing vector fields and spherically symmetric
models. We also review the more general models obtained by coupling matter
fields to these systems. Throughout the paper we give separate discussions for
standard quantizations using geometrodynamical variables and those relying on
loop quantum gravity inspired methods.Comment: To appear in Living Review in Relativit
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
Trace anomalies in chiral theories revisited
Motivated by the search for possible CP violating terms in the trace of the
energy-momentum tensor in theories coupled to gravity we revisit the problem of trace
anomalies in chiral theories. We recalculate the latter and ascertain that in the trace of
the energy-momentum tensor of theories with chiral fermions at one-loop the Pontryagin
density appears with an imaginary coefficient. We argue that this may break unitarity, in
which case the trace anomaly has to be used as a selective criterion for theories, analogous
to the chiral anomalies in gauge theories. We analyze some remarkable consequences of
this fact, that seem to have been overlooked in the literature
Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function
We evaluate the one loop determinant of matter multiplet fields of N=4
supergravity in the near horizon geometry of quarter BPS black holes, and use
it to calculate logarithmic corrections to the entropy of these black holes
using the quantum entropy function formalism. We show that even though
individual fields give non-vanishing logarithmic contribution to the entropy,
the net contribution from all the fields in the matter multiplet vanishes. Thus
logarithmic corrections to the entropy of quarter BPS black holes, if present,
must be independent of the number of matter multiplet fields in the theory.
This is consistent with the microscopic results. During our analysis we also
determine the complete spectrum of small fluctuations of matter multiplet
fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde
- …