7 research outputs found
Variations on the Seventh Route to Relativity
As motivated in the full abstract, this paper further investigates Barbour,
Foster and O Murchadha (BFO)'s 3-space formulation of GR. This is based on
best-matched lapse-eliminated actions and gives rise to several theories
including GR and a conformal gravity theory. We study the simplicity postulates
assumed in BFO's work and how to weaken them, so as to permit the inclusion of
the full set of matter fields known to occur in nature.
We study the configuration spaces of gravity-matter systems upon which BFO's
formulation leans. In further developments the lapse-eliminated actions used by
BFO become impractical and require generalization. We circumvent many of these
problems by the equivalent use of lapse-uneliminated actions, which furthermore
permit us to interpret BFO's formulation within Kuchar's generally covariant
hypersurface framework. This viewpoint provides alternative reasons to BFO's as
to why the inclusion of bosonic fields in the 3-space approach gives rise to
minimally-coupled scalar fields, electromagnetism and Yang--Mills theory. This
viewpoint also permits us to quickly exhibit further GR-matter theories
admitted by the 3-space formulation. In particular, we show that the spin-1/2
fermions of the theories of Dirac, Maxwell--Dirac and Yang--Mills--Dirac, all
coupled to GR, are admitted by the generalized 3-space formulation we present.
Thus all the known fundamental matter fields can be accommodated. This
corresponds to being able to pick actions for all these theories which have
less kinematics than suggested by the generally covariant hypersurface
framework. For all these theories, Wheeler's thin sandwich conjecture may be
posed, rendering them timeless in Barbour's sense.Comment: Revtex version; Journal-ref adde