28 research outputs found
A Massive Renormalizable Abelian Gauge Theory in 2+1 Dimensions
The standard formulation of a massive Abelian vector field in
dimensions involves a Maxwell kinetic term plus a Chern-Simons mass term; in
its place we consider a Chern-Simons kinetic term plus a Stuekelberg mass term.
In this latter model, we still have a massive vector field, but now the
interaction with a charged spinor field is renormalizable (as opposed to super
renormalizable). By choosing an appropriate gauge fixing term, the Stuekelberg
auxiliary scalar field decouples from the vector field. The one-loop spinor
self energy is computed using operator regularization, a technique which
respects the three dimensional character of the antisymmetric tensor
. This method is used to evaluate the vector self
energy to two-loop order; it is found to vanish showing that the beta function
is zero to two-loop order. The canonical structure of the model is examined
using the Dirac constraint formalism.Comment: LaTeX, 17 pages, expanded reference list and discussion of
relationship to previous wor
Partition functions and double-trace deformations in AdS/CFT
We study the effect of a relevant double-trace deformation on the partition
function (and conformal anomaly) of a CFT at large N and its dual picture in
AdS. Three complementary previous results are brought into full agreement with
each other: bulk and boundary computations, as well as their formal identity.
We show the exact equality between the dimensionally regularized partition
functions or, equivalently, fluctuational determinants involved. A series of
results then follows: (i) equality between the renormalized partition functions
for all d; (ii) for all even d, correction to the conformal anomaly; (iii) for
even d, the mapping entails a mixing of UV and IR effects on the same side
(bulk) of the duality, with no precedent in the leading order computations; and
finally, (iv) a subtle relation between overall coefficients, volume
renormalization and IR-UV connection. All in all, we get a clean test of the
AdS/CFT correspondence beyond the classical SUGRA approximation in the bulk and
at subleading O(1) order in the large-N expansion on the boundary.Comment: 18 pages, uses JHEP3.cls. Published JHEP versio
Linking the trans-Planckian and the information loss problems in black hole physics
The trans-Planckian and information loss problems are usually discussed in
the literature as separate issues concerning the nature of Hawking radiation.
Here we instead argue that they are intimately linked, and can be understood as
"two sides of the same coin" once it is accepted that general relativity is an
effective field theory.Comment: 10 pages, 2 figures. Replaced with the version to be published in
General Relativity and Gravitatio
Spacetime Noncommutativity and Antisymmetric Tensor Dynamics in the Early Universe
This paper investigates the possible cosmological implications of the
presence of an antisymmetric tensor field related to a lack of commutatitivity
of spacetime coordinates at the Planck era. For this purpose, such a field is
promoted to a dynamical variable, inspired by tensor formalism. By working to
quadratic order in the antisymmetric tensor, we study the field equations in a
Bianchi I universe in two models: an antisymmetric tensor plus scalar field
coupled to gravity, or a cosmological constant and a free massless
antisymmetric tensor. In the first scenario, numerical integration shows that,
in the very early universe, the effects of the antisymmetric tensor can prevail
on the scalar field, while at late times the former approaches zero and the
latter drives the isotropization of the universe. In the second model, an
approximate solution is obtained of a nonlinear ordinary differential equation
which shows how the mean Hubble parameter and the difference between
longitudinal and orthogonal Hubble parameter evolve in the early universe.Comment: 25 pages, Revtex file, 4 figures in attachmen
Hamilton's Formalism for Systems with Constraints
The main goal of these lectures is to introduce and review the Hamiltonian
formalism for classical constrained systems and in particular gauge theories.
Emphasis is put on the relation between local symmetries and constraints and on
the relation between Lagrangean and Hamiltonian symmetries.Comment: 52 pages, revised LATEX version, ETH-TH/93-48, Lectures given at the
Seminar "The Canonical Formalism in Classical and Quantum General
Relativity", Bad Honnef, September 9
Schwinger Pair Production via Instantons in Strong Electric Fields
In the space-dependent gauge, each mode of the Klein-Gordon equation in a
strong electric field takes the form of a time-independent Schr\"{o}dinger
equation with a potential barrier. We propose that the single- and
multi-instantons of quantum tunneling may be related with the single- and
multi-pair production of bosons and the relative probability for the no-pair
production is determined by the total tunneling probability via instantons. In
the case of a uniform electric field, the instanton interpretation recovers
exactly the well-known pair production rate for bosons and when the Pauli
blocking is taken into account, it gives the correct fermion production rate.
The instanton is used to calculate the pair production rate even in an
inhomogeneous electric field. Furthermore, the instanton interpretation
confirms the fact that bosons and fermions can not be produced by a static
magnetic field only.Comment: RevTex 7 Pages, No figure; Formulae for the production rate in very
strong fields and references added; the final version accepted in Phys. Rev.
On the Holographic RG-flow and the Low-energy, Strong Coupling, Large N Limit
From the AdS/CFT correspondence, we learn that the classical evolution of
supergravity in the bulk can be reduced to a RG-flow equation for the dual
low-energy, strongly coupled and large N gauge theory on the boundary. This
result has been used to obtain interesting relations between the various terms
in the gravitational part of the boundary effective action, in particular the
term that affect the cosmological constant. It is found that once the
cosmological constant is cancelled in the UV theory, the RG-flow symmetry of
the boundary effective action automatically implies the existence of zero
cosmological constant solutions that extend all the way into the IR. Given the
standard (and well founded) contradiction between the RG-flow idea and the
observational evidence of a small cosmological constant, this is considered to
be an important progress, albeit incomplete, towards the final solution.
Motivated by this success, it would be interesting to see whether this
RG-stability extends outside the scope of strong 't Hooft coupling and large N
regime that are implicitly assumed in the de Boer-Verlinde-Verlinde
Hamilton-Jacobi formulation of the holographic RG-flow equations of the
boundary theory. In this paper, we address this question. Taking into account
the leading order corrections in the 1/N and parameters, we
derive new bulk/boundary relations, from which one can read all the local terms
in the boundary effective action. Next, we use the resulting constraints, to
examine whether the RG-stability of the cosmological constant extends to the
new coupling regime. It would be also interesting to use these constraints to
study the Randall-Sundrum scenario in this case.Comment: 27 pages, LateX, no figures, minor changes, typos corrected and added
more reference
Factors affecting body temperatures of toads
Factors influencing levels and rates of variation of body temperature ( T b ) in montane Bufo boreas boreas and in lowland Bufo boreas halophilus were investigated as an initial step toward understanding the role of natural thermal variation in the physiology and energetics of these ectothermic animals. Body temperatures of boreas can vary 25–30° C over 24-h periods. Such variation is primarily due to both nocturnal and diurnal activity and the physical characteristics of the montane environment. Bufo boreas halophilus are primarily nocturnal except during breeding and are voluntarily active at body temperatures ranging between 10 and 25° C. Despite variation in T b encountered in the field, boreas select a narrow range of T b in a thermal gradient, averaging 23.5 and 26.2° C for fasted individuals maintained under field conditions or acclimated to 20° C, respectively. In a thermal gradient the mean T b of fasted halophilus acclimated to 20° C is 23.9° C. Skin color of boreas varies in the field from very dark to light. The dark skins absorb approximately 4% more radiation than the light ones. Light colored boreas should absorb approximately 5% more radiation than similarly colored halophilus . Evaporative water losses increase directly with skin temperatures and vapor pressure deficit in both subspecies. Larger individuals heat and cool more slowly than smaller ones. Calculation of an enery budget for boreal toads suggests that they could sit in direct sunlight for long periods without fatally overheating, providing the skin was continually moist.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47722/1/442_2004_Article_BF00344732.pd