1,488 research outputs found

    Radiation Information from 1958 δ2

    Get PDF
    The telemetered radiation information from the satellite 1958 δ2 (Sputnik III) has been analyzed for sixty-two separate passes recorded in College, Alaska. The data indicate a dependence of radiation intensity on altitude in the range 250-500 km. Both the high and low energy components apparently contribute to the overall increase of intensity with altitude, but the presence of a continuous afterglow in the scintillating crystal prevented detailed interpretation of the results.IGY Project No. 32.42 NSF Grant No. Y/32.42/268Ye

    van Vleck determinants: geodesic focussing and defocussing in Lorentzian spacetimes

    Full text link
    The van Vleck determinant is an ubiquitous object, arising in many physically interesting situations such as: (1) WKB approximations to quantum time evolution operators and Green functions. (2) Adiabatic approximations to heat kernels. (3) One loop approximations to functional integrals. (4) The theory of caustics in geometrical optics and ultrasonics. (5) The focussing and defocussing of geodesic flows in Riemannian manifolds. While all of these topics are interrelated, the present paper is particularly concerned with the last case and presents extensive theoretical developments that aid in the computation of the van Vleck determinant associated with geodesic flows in Lorentzian spacetimes. {\sl A fortiori} these developments have important implications for the entire array of topics indicated. PACS: 04.20.-q, 04.20.Cv, 04.60.+n. To appear in Physical Review D47 (1993) 15 March.Comment: plain LaTeX, 18 page

    Localized Particle States and Dynamics Gravitational Effects

    Full text link
    Scalar particles--i.e., scalar-field excitations--in de Sitter space exhibit behavior unlike either classical particles in expanding space or quantum particles in flat spacetime. Their energies oscillate forever, and their interactions are spread out in energy. Here it is shown that these features characterize not only normal-mode excitations spread out over all space, but localized particles or wave packets as well. Both one-particle and coherent states of a massive, minimally coupled scalar field in de Sitter space, associated with classical wave packets, are constructed explicitly. Their energy expectation values and corresponding Unruh-DeWitt detector response functions are calculated. Numerical evaluation of these quantities for a simple set of classical wave packets clearly displays these novel features. Hence, given the observed accelerating expansion of the Universe, it is possible that observation of an ultralow-mass scalar particle could yield direct confirmation of distinct predictions of quantum field theory in curved spacetime.Comment: 12 pages, 5 figure

    One Loop Graviton Self-Energy In A Locally De Sitter Background

    Get PDF
    The graviton tadpole has recently been computed at two loops in a locally de Sitter background. We apply intermediate results of this work to exhibit the graviton self-energy at one loop. This quantity is interesting both to check the accuracy of the first calculation and to understand the relaxation effect it reveals. In the former context we show that the self-energy obeys the appropriate Ward identity. We also show that its flat space limit agrees with the flat space result obtained by Capper in what should be the same gauge.Comment: 35 pages, plain TeX, 4 Postscript files, uses psfig.sty, revised June 1996 for publication in Physical Review

    The Fermion Self-Energy during Inflation

    Full text link
    We compute the one loop fermion self-energy for massless Dirac + Einstein in the presence of a locally de Sitter background. We employ dimensional regularization and obtain a fully renormalized result by absorbing all divergences with BPHZ counterterms. An interesting technical aspect of this computation is the need for a noninvariant counterterm owing to the breaking of de Sitter invariance by our gauge condition. Our result can be used in the quantum-corrected Dirac equation to search for inflation-enhanced quantum effects from gravitons, analogous to those which have been found for massless, minimally coupled scalars.Comment: 63 pages, 3 figures (uses axodraw.sty), LaTeX 2epsilon. Revised version (to appear in Classical and Quantum Gravity) corrects some typoes and contains some new reference

    On Unitary Evolution of a Massless Scalar Field In A Schwarzschild Background: Hawking Radiation and the Information Paradox

    Full text link
    We develop a Hamiltonian formalism which can be used to discuss the physics of a massless scalar field in a gravitational background of a Schwarzschild black hole. Using this formalism we show that the time evolution of the system is unitary and yet all known results such as the existence of Hawking radiation can be readily understood. We then point out that the Hamiltonian formalism leads to interesting observations about black hole entropy and the information paradox.Comment: 45 pages, revte

    Effective Screened Potentials of Strongly Coupled Semiclassical Plasma

    Full text link
    The pseudopotentials of particle interaction of astrongly coupled semiclassical plasma, taking into account bothquantum-mechanical effects of diffraction at short distances andalso screening field effects at large distances are obtained. Thelimiting cases of potentials are considered.Comment: 15 pages, TeX, 7 figure

    Coordinate representation of particle dynamics in AdS and in generic static spacetimes

    Full text link
    We discuss the quantum dynamics of a particle in static curved spacetimes in a coordinate representation. The scheme is based on the analysis of the squared energy operator E^2, which is quadratic in momenta and contains a scalar curvature term. Our main emphasis is on AdS spaces, where this term is fixed by the isometry group. As a byproduct the isometry generators are constructed and the energy spectrum is reproduced. In the massless case the conformal symmetry is realized as well. We show the equivalence between this quantization and the covariant quantization, based on the Klein-Gordon type equation in AdS. We further demonstrate that the two quantization methods in an arbitrary (N+1)-dimensional static spacetime are equivalent to each other if the scalar curvature terms both in the operator E^2 and in the Klein-Gordon type equation have the same coefficient equal to (N-1)/(4N).Comment: 14 pages, no figures, typos correcte

    Measurement Analysis and Quantum Gravity

    Full text link
    We consider the question of whether consistency arguments based on measurement theory show that the gravitational field must be quantized. Motivated by the argument of Eppley and Hannah, we apply a DeWitt-type measurement analysis to a coupled system that consists of a gravitational wave interacting with a mass cube. We also review the arguments of Eppley and Hannah and of DeWitt, and investigate a second model in which a gravitational wave interacts with a quantized scalar field. We argue that one cannot conclude from the existing gedanken experiments that gravity has to be quantized. Despite the many physical arguments which speak in favor of a quantum theory of gravity, it appears that the justification for such a theory must be based on empirical tests and does not follow from logical arguments alone.Comment: 31 pages, many conceptual clarifications included, new appendix added, to appear in Phys. Rev.

    Factorization of gravitational Compton scattering amplitude in the linearized version of general relativity

    Full text link
    Gravitational Compton scattering process with a massive fermion is studied in the context of the linearized gravity. Gravitational gauge invariance and graviton transversality cause the transition amplitude to be factorized into that of scalar QED Compton scattering and that of fermion QED Compton scattering with an overall kinematical factor. The factorization is shown explicitly and its physical implications are discussed.Comment: 11 pages, 1 figure(not included), Revtex 3.0, SNUTP 93-2
    • …
    corecore