14 research outputs found

    Dependence of nuclear spin singlet lifetimes on RF spin-locking power

    Full text link
    We measure the lifetime of long-lived nuclear spin singlet states as a function of the strength of the RF spin-locking field and present a simple theoretical model that agrees well with our measurements, including the low-RF-power regime. We also measure the lifetime of a long-lived coherence between singlet and triplet states that does not require a spin-locking field for preservation. Our results indicate that for many molecules, singlet states can be created using weak RF spin-locking fields: more than two orders of magnitude lower RF power than in previous studies. Our findings suggest that in many biomolecules, singlets and related states with enhanced lifetimes might be achievable in vivo with safe levels of RF power

    Preparation of Nuclear Spin Singlet States Using Spin-Lock Induced Crossing

    Get PDF
    We introduce a broadly applicable technique to create nuclear spin singlet states in organic molecules and other many-atom systems. We employ a novel pulse sequence to produce a spin-lock induced crossing (SLIC) of the spin singlet and triplet energy levels, which enables triplet-singlet polarization transfer and singlet-state preparation. We demonstrate the utility of the SLIC method by producing a long-lived nuclear spin singlet state on two strongly coupled proton pairs in the tripeptide molecule phenylalanine-glycine-glycine dissolved in D2_2O and by using SLIC to measure the J couplings, chemical shift differences, and singlet lifetimes of the proton pairs. We show that SLIC is more efficient at creating nearly equivalent nuclear spin singlet states than previous pulse sequence techniques, especially when triplet-singlet polarization transfer occurs on the same time scale as spin-lattice relaxation.Physic

    A statistical learning framework for mapping indirect measurements of ergodic systems to emergent properties

    Full text link
    The discovery of novel experimental techniques often lags behind contemporary theoretical understanding. In particular, it can be difficult to establish appropriate measurement protocols without analytic descriptions of the underlying system-of-interest. Here we propose a statistical learning framework that avoids the need for such descriptions for ergodic systems. We validate this framework by using Monte Carlo simulation and deep neural networks to learn a mapping between low-field nuclear magnetic resonance spectra and proton exchange rates in ethanol-water mixtures. We found that trained networks exhibited normalized-root-mean-square errors of less than 1% for exchange rates under 150 s-1 but performed poorly for rates above this range. This differential performance occurred because low-field measurements are indistinguishable from one another at fast exchange. Nonetheless, where a discoverable relationship between indirect measurements and emergent dynamics exists, we demonstrate the possibility of approximating it without the need for precise analytic descriptions, allowing experimental science to flourish in the midst of ongoing theoretical wor

    Dependence of nuclear spin singlet lifetimes on RF spin-locking power

    No full text
    We measure the lifetime of long-lived nuclear spin singlet states as a function of the strength of the RF spin-locking field and present a simple theoretical model that agrees well with our measurements, including the low-RF-power regime. We also measure the lifetime of a long-lived coherence between sin- glet and triplet states that does not require a spin-locking field for preservation. Our results indicate that for many molecules, singlet states can be created using weak RF spin-locking fields: more than two orders of magnitude lower RF power than in previous studies. Our findings suggest that for many endogenous biomolecules, singlets and related states with enhanced lifetimes might be achievable in vivo with safe levels of RF power.Chemistry and Chemical BiologyPhysic

    Probing scalar coupling differences via long-lived singlet states

    No full text
    a b s t r a c t We probe small scalar coupling differences via the coherent interactions between two nuclear spin singlet states in organic molecules. We show that the spin-lock induced crossing (SLIC) technique enables the coherent transfer of singlet order between one spin pair and another. The transfer is mediated by the difference in syn and anti vicinal or long-range J couplings among the spins. By measuring the transfer rate, we calculate a J coupling difference of 8 ± 2 mHz in phenylalanine-glycine-glycine and 2:57 AE 0:04 Hz in glutamate. We also characterize a coherence between two singlet states in glutamate, which may enable the creation of a long-lived quantum memory. Published by Elsevier Inc

    NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond

    Get PDF
    We demonstrate a robust experimental method for determining the depth of individual shallow nitrogen-vacancy (NV) centers in diamond with ∼1 nm uncertainty. We use a confocal microscope to observe single NV centers and detect the proton nuclear magnetic resonance (NMR) signal produced by objective immersion oil, which has well understood nuclear spin properties, on the diamond surface. We determine the NV center depth by analyzing the NV NMR data using a model that describes the interaction of a single NV center with the statistically polarized proton spin bath. We repeat this procedure for a large number of individual, shallow NV centers and compare the resulting NV depths to the mean value expected from simulations of the ion implantation process used to create the NV centers, with reasonable agreement.Physic
    corecore