432 research outputs found
Ripening Stage Effects on Mechanical and Functional Properties of Pastry Filled with Sweet Cherries (Prunus avium, âFerroviaâ Cultivar)
Sweet cherry is a precious fruit for the wealth of minerals, vitamins and other important protecting, detoxifying and purifying principles. These features make it interesting in terms of nutritional and health point of view. Many studies have demonstrated the beneficial effects on prevention of cardiovascular and articular diseases, due to anti-inflammatory and analgesic action of sweet cherry. However, because of its seasonality, it needs technological treatments to be preserved (jam, puree or semi-finished products for pastry), that could compromise its nutritional quality. The aim of this work was to study the effects of ripening stage and technological tratments on mechanical and functional properties of pastries filled with sweet cherries during storage at room temperature. Results showed that the different ripeness of cherries influenced the mechanical properties of samples: pastries filled with overripe cherries resulted more hard (97 vs. 79 N), less cohesive (0.19 vs. 0.25) and springy (6.4 vs. 8.5 mm) than medium harvest cherries. The antioxidant capacity of medium harvest sweet cherries did not change after both technological treatments and storage (0.93 vs. 0.89 TEAC micromol/g dry basis). These results highlight the importance of ripening stage of processed fruit used as ingredient in complex food in order to obtain a product with good functional and quality properties
Hospital Discharge: Results From an Italian Multicenter Prospective Study Using Blaylock Risk Assessment Screening Score
PURPOSE:To analyze the predictive validity and reliability of the Blaylock Risk Assessment Screening Score (BRASS) Index in a large group of patients.
METHODS: Prospective multicenter observational study was conducted in six Italian hospitals. Data were collected in three phases.
FINDINGS: Seven hundred eleven patients were recruited. The mean length of hospitalization for low-risk patients was significantly shorter than those in the medium and high-risk groups. Patients with a BRASS Index lower than 10, unlike those with a higher BRASS Index, were mainly discharged home.
CONCLUSIONS: Our results indicate that the BRASS Index is useful to identify patients at risk for prolonged hospitalization.
CLINICAL RELEVANCE: The use of a validated BRASS instrument can be useful to screen the patients, improving individual discharge planning
Thio-linked UDP-peptide conjugates as O-GlcNAc transferase inhibitors
O-GlcNAc
transferase (OGT) is an essential glycosyltransferase
that installs the O-GlcNAc post-translational modification on the
nucleocytoplasmic proteome. We report the development of S-linked
UDPâpeptide conjugates as potent bisubstrate OGT inhibitors.
These compounds were assembled in a modular fashion by photoinitiated
thiolâene conjugation of allyl-UDP and optimal acceptor peptides
in which the acceptor serine was replaced with cysteine. The conjugate
VTPVCÂ(S-propyl-UDP)ÂTA (<i>K</i><sub>i</sub> = 1.3 ÎŒM)
inhibits the OGT activity in HeLa cell lysates. Linear fusions of
this conjugate with cell penetrating peptides were explored as prototypes
of cell-penetrant OGT inhibitors. A crystal structure of human OGT
with the inhibitor revealed mimicry of the interactions seen in the
pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative
of the inhibitor works as a high affinity probe in a fluorescence
polarimetry hOGT assay
Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1
Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJunâcFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS †7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases
Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells
Phage display screening allows the study of functional proteinâprotein interactions at the cell surface, but investigating intracellular organelles remains a challenge. Here we introduce internalizing-phage libraries to identify clones that enter mammalian cells through a receptor-independent mechanism and target-specific organelles as a tool to select ligand peptides and identify their intracellular receptors. We demonstrate that penetratin, an antennapedia-derived peptide, can be displayed on the phage envelope and mediate receptor-independent uptake of internalizing phage into cells. We also show that an internalizing-phage construct displaying an established mitochondria-specific localization signal targets mitochondria, and that an internalizing-phage random peptide library selects for peptide motifs that localize to different intracellular compartments. As a proof-of-concept, we demonstrate that one such peptide, if chemically fused to penetratin, is internalized receptor-independently, localizes to mitochondria, and promotes cell death. This combinatorial platform technology has potential applications in cell biology and drug development
A high-throughput synthetic platform enables the discovery of proteomimetic cell penetrating peptides and bioportides
Collectively, cell penetrating peptide (CPP) vectors and intrinsically active bioportides possess tremendous potential for drug delivery applications and the discrete modulation of intracellular targets including the sites of proteinâprotein interactions (PPIs). Such sequences are usually relatively short (<â25 AA), polycationic in nature and able to access the various intracellular compartments of eukaryotic cells without detrimental influences upon cellular biology. The high-throughput platform for bioportide discovery described herein exploits the discovery that many human proteins are an abundant source of potential CPP sequences which are reliably predicted using QSAR algorithms or other methods. Subsequently, microwave-enhanced solid phase peptides synthesis provides a high-throughput source of novel proteomimetic CPPs for screening purposes. By focussing upon cationic helical domains, often located within the molecular interfaces that facilitate PPIs, bioportides which act by a dominant-negative mechanism at such sites can be reliably identified within small number libraries of CPPs. Protocols that employ fluorescent peptides, routinely prepared by N-terminal acylation with carboxytetramethylrhodamine, further enable both the quantification of cellular uptake kinetics and the identification of specific site(s) of intracellular accretion. Chemical modifications of linear peptides, including strategies to promote and stabilise helicity, are compatible with the synthesis of second-generation bioportides with improved drug-like properties to further exploit the inherent selectivity of biologics
Distinct Behaviour of the Homeodomain Derived Cell Penetrating Peptide Penetratin in Interaction with Different Phospholipids
Penetratin is a protein transduction domain derived from the homeoprotein Antennapedia. Thereby it is currently used as a cell penetrating peptide to introduce diverse molecules into eukaryotic cells, and it could also be involved in the cellular export of transcription factors. Moreover, it has been shown that it is able to act as an antimicrobial agent. The mechanisms involved in all these processes are quite controversial.In this article, we report spectroscopic, calorimetric and biochemical data on the penetratin interaction with three different phospholipids: phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to mimic respectively the outer and the inner leaflets of the eukaryotic plasma membrane and phosphatidylglycerol (PG) to mimic the bacterial membrane. We demonstrate that with PC, penetratin is able to form vesicle aggregates with no major change in membrane fluidity and presents no well defined secondary structure organization. With PE, penetratin aggregates vesicles, increases membrane rigidity and acquires an α-helical structure. With PG membranes, penetratin does not aggregate vesicles but decreases membrane fluidity and acquires a structure with both α-helical and ÎČâsheet contributions.These data from membrane models suggest that the different penetratin actions in eukaryotic cells (membrane translocation during export and import) and on prokaryotes may result from different peptide and lipid structural arrangements. The data suggest that, for eukaryotic cell penetration, penetratin does not acquire classical secondary structure but requires a different conformation compared to that in solution
Metal Hydrides Form Halogen Bonds: Measurement of Energetics of Binding
The formation of halogen bonds from iodopentafluorobenzene and 1-iodoperfluorohexane to a series of bis(η5-cyclopentadienyl)metal hydrides (Cp2TaH3, 1; Cp2MH2, M = Mo, 2, M = W, 3; Cp2ReH, 4; Cp2Ta(H)CO, 5; Cp = η5-cyclopentadienyl) is demonstrated by 1H NMR spectroscopy. Interaction enthalpies and entropies for complex 1 with C6F5I and C6F13I are reported (ÎH° = â10.9 ± 0.4 and â11.8 ± 0.3 kJ/mol; ÎS° = â38 ± 2 and â34 ± 2 J/(mol·K), respectively) and found to be stronger than those for 1 with the hydrogen-bond donor indole (ÎH° = â7.3 ± 0.1 kJ/mol, ÎS° = â24 ± 1 J/(mol·K)). For the more reactive complexes 2â5, measurements are limited to determination of their low-temperature (212 K) association constants with C6F5I as 2.9 ± 0.2, 2.5 ± 0.1, <1.5, and 12.5 ± 0.3 Mâ1, respectively
The HOXB4 Homeoprotein Promotes the Ex Vivo Enrichment of Functional Human Embryonic Stem Cell-Derived NK Cells
Human embryonic stem cells (hESCs) can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs) formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs) but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNÎł and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34+CD45RA+ precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells
The Homeodomain Derived Peptide Penetratin Induces Curvature of Fluid Membrane Domains
BACKGROUND:Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, "physical endocytosis". METHODOLOGY/PRINCIPAL FINDINGS:Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in "raft" microdomains versus disordered fluid "non-raft" domains) in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation) are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like) membrane domains. CONCLUSIONS/SIGNIFICANCE:The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we showed that the membrane targets for these molecules are preferentially the fluid membrane domains and that the mechanism involves the induction of membrane negative curvature. Consequences on cellular uptake are discussed
- âŠ