29 research outputs found

    Cariogenicity tests.

    Full text link
    An American Dental Association Scientific Consensus Conference on Methods for the Assessment of the Cariogenic Potential (CP) of Foods was held in San Antonio, Texas, in 1985. The aim was to establish a scientific consensus regarding methods to assess the CP of foods. As a result, a sequential food-testing program was proposed involving Animal Caries, Human Plaque Acidity, and Demineralization/Remineralization Models. Two categories of CP--namely, no CP and low CP--were included. The test protocol has hardly been followed since, primarily because the category of low CP was not considered useful in dietary counseling. It is advocated that research into possible caries-preventive factors of food will be more beneficial for improvements of the oral health of the general population than assessments of low CP

    Transitional Flow in a Cylindrical Flow Chamber for Studies at the Cellular Level

    No full text
    Fluid shear stress is an important regulator of vascular and endothelial cell (EC) functions. Its effect is dependent not only on magnitude but also on flow type. Although laminar flow predominates in the vasculature, transitional flow can occur and is thought to play a role in vascular diseases. While a great deal is known about the mechanisms and signaling cascades through which laminar shear stress regulates cells, little is known on how transitional shear stress regulates cells. To better understand the response of endothelial cells to transitional shear stress, a novel cylindrical flow chamber was designed to expose endothelial cells to a transitional flow environment similar to that found in vivo. The velocity profiles within the transitional flow chamber at Reynolds numbers 2200 and 3000 were measured using laser Doppler anemometry (LDA). At both Reynolds numbers, the velocity profiles are blunt (non-parabolic) with fluctuations larger than 5% of the velocity at the center of the pipe indicating the flows are transitional. Based on near wall velocity measurements and well established data for flow at these Reynolds numbers, the wall shear stress was estimated to be 3–4 and 5–6 dynes/cm(2) for Reynolds number 2200 and 3000, respectively. In contrast to laminar shear stress, no cell alignment was observed under transitional shear stress at both Reynolds numbers. However, transitional shear stress at the higher Reynolds number caused cell elongation similar to that of laminar shear stress at 3 dynes/cm(2). The fluctuating component of the wall shear stress may be responsible for these differences. The transitional flow chamber will facilitate cellular studies to identify the mechanisms through which transitional shear stress alters EC biology, which will assist in the development of vascular therapeutic treatments
    corecore