24 research outputs found

    Dual targeting of CCR2 and CX3CR1 in an arterial injury model of vascular inflammation

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>The chemokine receptors CCR2 and CX3CR1 are important in the development of coronary artery disease. The purpose of this study is to analyze the effect of a novel CCR2 inhibitor in conjunction with CX3CR1 deletion on vascular inflammation.</p> <p>Methods</p> <p>The novel CCR2 antagonist MRL-677 was characterized using an in vivo model of monocyte migration. To determine the relative roles of CCR2 and CX3CR1 in vascular remodeling, normal or CX3CR1 deficient mice were treated with MRL-677. After 14 days, the level of intimal hyperplasia in the artery was visualized by paraffin sectioning and histology of the hind limbs.</p> <p>Results</p> <p>MRL-677 is a CCR2 antagonist that is effective in blocking macrophage trafficking in a peritoneal thioglycollate model. Intimal hyperplasia resulting from vascular injury was also assessed in mice. Based on the whole-blood potency of MRL-677, sufficient drug levels were maintained for the entire 14 day experimental period to afford good coverage of mCCR2 with MRL-677. Blocking CCR2 with MRL-677 resulted in a 56% decrease in the vascular injury response (n = 9, p < 0.05) in normal animals. Mice in which both CCR2 and CX3CR1 pathways were targeted (CX3CR1 KO mice given MRL-677) had an 88% decrease in the injury response (n = 6, p = 0.009).</p> <p>Conclusion</p> <p>In this study we have shown that blocking CCR2 with a low molecular weight antagonist ameliorates the inflammatory response to vascular injury. The protective effect of CCR2 blockade is increased in the presence of CX3CR1 deficiency suggesting that CX3CR1 and CCR2 have non-redundant functions in the progression of vascular inflammation.</p

    Btk inhibition suppresses agonist-induced human macrophage activation and inflammatory gene expression in RA synovial tissue explants

    No full text
    Bruton's tyrosine kinase (Btk) is required for B lymphocyte and myeloid cell contributions to pathology in murine models of arthritis. Here, we examined the potential contributions of synovial Btk expression and activation to inflammation in rheumatoid arthritis (RA). Btk was detected by immunohistochemistry and digital image analysis in synovial tissue from biologically naive RA (n=16) and psoriatic arthritis (PsA) (n=12) patients. Cell populations expressing Btk were identified by immunofluorescent double labelling confocal microscopy, quantitative (q-) PCR and immunoblotting. The effects of a Btk-specific inhibitor, RN486, on gene expression in human macrophages and RA synovial tissue explants (n=8) were assessed by qPCR, ELISA and single-plex assays. Btk was expressed at equivalent levels in RA and PsA synovial tissue, restricted to B lymphocytes, monocytes, macrophages and mast cells. RN486 significantly inhibited macrophage IL-6 production induced by Fc receptor and CD40 ligation. RN486 also reduced mRNA expression of overlapping gene sets induced by IgG, CD40 ligand (CD40L) and RA synovial fluid, and significantly suppressed macrophage production of CD40L-induced IL-8, TNF, MMP-1 and MMP-10, LPS-induced MMP-1, MMP-7 and MMP-10 production, and spontaneous production of IL-6, PDGF, CXCL-9 and MMP-1 by RA synovial explants. Btk is expressed equivalently in RA and PsA synovial tissue, primarily in macrophages. Btk activity is needed to drive macrophage activation in response to multiple agonists relevant to inflammatory arthritis, and promotes RA synovial tissue cytokine and MMP production. Pharmacological targeting of Btk may be of therapeutic benefit in the treatment of RA and other inflammatory disease
    corecore