29 research outputs found

    Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion

    Get PDF
    Cell migration involves many steps, including membrane protrusion and the development of new adhesions. Here we have investigated whether there is a link between actin polymerization and integrin engagement. In response to signals that trigger membrane protrusion, the actin-related protein (Arp)2/3 complex transiently binds to vinculin, an integrin-associated protein. The interaction is regulated, requiring phosphatidylinositol-4,5-bisphosphate and Rac1 activation, and is sufficient to recruit the Arp2/3 complex to new sites of integrin aggregation. Binding of the Arp2/3 complex to vinculin is direct and does not depend on the ability of vinculin to associate with actin. We have mapped the binding site for the Arp2/3 complex to the hinge region of vinculin, and a point mutation in this region selectively blocks binding to the Arp2/3 complex. Compared with WT vinculin, expression of this mutant in vinculin-null cells results in diminished lamellipodial protrusion and spreading on fibronectin. The recruitment of the Arp2/3 complex to vinculin may be one mechanism through which actin polymerization and membrane protrusion are coupled to integrin-mediated adhesion

    Coupling membrane protrusion and cell adhesion

    Get PDF
    The ability of cells to extend cell membranes is central to numerous biological processes, including cell migration, cadherin-mediated junction formation and phagocytosis. Much attention has been focused on understanding the signals that trigger membrane protrusion and the architecture of the resulting extension. Similarly, cell adhesion has been extensively studied, yielding a wealth of information about the proteins involved and how they signal to the cytoplasm. Although we have learned much about membrane protrusion and cell adhesion, we know less about how these two processes are coupled. Traditionally it has been thought that they are linked by the signaling pathways they employ - for example, those involving Rho family GTPases. However, there are also physical links between the cellular machineries that mediate cell adhesion and membrane protrusion, such as vinculin

    Integrin signaling to the actin cytoskeleton

    Get PDF
    Integrin engagement stimulates the activity of numerous signaling molecules, including the Rho family of GTPases, tyrosine phosphatases, cAMP-dependent protein kinase and protein kinase C, and stimulates production of PtdIns(4,5)P2. Integrins promote actin assembly via the recruitment of molecules that directly activate the actin polymerization machinery or physically link it to sites of cell adhesion

    IpaA Targets β1 Integrins and Rho to Promote Actin Cytoskeleton Rearrangements Necessary for Shigella Entry

    Get PDF
    Shigella invasion into the colonic epithelium involves many steps including the formation of large membrane protrusions by the epithelial cells that facilitate bacterial engulfment. IpaA, a Shigella protein secreted into target cells upon cell contact induces a loss of actin stress fibers in cells and promotes the reorganization of actin at the site of entry. The mechanism for this is not known but is thought to involve recruitment of the focal adhesion protein vinculin to IpaA. Here we have examined the mechanism for the effects of IpaA on the actin cytoskeleton. We show that IpaA-induced loss of actin stress fibers and cell rounding do not require vinculin expression or an intact vinculin binding site on IpaA. Rather, we find that cells expressing IpaA exhibited elevated Rho activity and increased myosin light chain phosphorylation. In addition, IpaA decreases integrin affinity for extracellular matrix ligands by interfering with talin recruitment to the integrin cytoplasmic tail. The combination of these two effects, namely weakened adhesion and increased contractility, account for the loss of actin stress fibers and cell rounding observed in cells exposed to IpaA

    ZO-1 recruitment to  -catenin - a novel mechanism for coupling the assembly of tight junctions to adherens junctions

    Get PDF
    The formation of a barrier between epithelial cells is a fundamental determinant of cellular homeostasis, protecting underlying cells against pathogens, dehydration and damage. Assembly of the tight junction barrier is dependent upon neighboring epithelial cells binding to one another and forming adherens junctions, but the mechanism for how these processes are linked is poorly understood. Using a knockdown and substitution system, we studied whether ZO-1 binding to α-catenin is required for coupling tight junction assembly to the formation of adherens junctions. We found that preventing ZO-1 binding to α-catenin did not appear to affect adherens junctions. Rather the assembly and maintenance of the epithelial barrier were disrupted. This disruption was accompanied by alterations in the mobility of ZO-1 and the organization of the actin cytoskeleton. Thus, our study identifies α-catenin binding to ZO-1 as a new mechanism for coupling the assembly of the epithelial barrier to cell-to-cell adhesion

    Rho Kinase Differentially Regulates Phosphorylation of Nonmuscle Myosin II Isoforms A and B during Cell Rounding and Migration

    Get PDF
    The actin-myosin cytoskeleton is generally accepted to produce the contractile forces necessary for cellular processes such as cell rounding and migration. All vertebrates examined to date are known to express at least two isoforms of non-muscle myosin II, referred to as myosin IIA and myosin IIB. Studies of myosin IIA and IIB in cultured cells and null mice suggest that these isoforms perform distinct functions. However, how each myosin II isoform contributes individually to all the cellular functions attributed to "myosin II" has yet to be fully characterized. Using isoform-specific small-interfering RNAs, we found that depletion of either isoform resulted in opposing migration phenotypes, with myosin IIA- and IIB-depleted cells exhibiting higher and lower wound healing migration rates, respectively. In addition, myosin IIA-depleted cells demonstrated impaired thrombin-induced cell rounding and undertook a more motile morphology, exhibiting decreased amounts of stress fibers and focal adhesions, with concomitant increases in cellular protrusions. Cells depleted of myosin IIB, however, were efficient in thrombin-induced cell rounding, displayed a more retractile phenotype, and maintained focal adhesions but only in the periphery. Last, we present evidence that Rho kinase preferentially regulates phosphorylation of the regulatory light chain associated with myosin IIA. Our data suggest that the myosin IIA and IIB isoforms are regulated by different signaling pathways to perform distinct cellular activities and that myosin IIA is preferentially required for Rho-mediated contractile functions

    Vinculin phosphorylation differentially regulates mechanotransduction at cell–cell and cell–matrix adhesions

    Get PDF
    Vinculin phosphorylation on residue Y822 is necessary for cell stiffening in response to tension on cadherins but not integrins.Cells experience mechanical forces throughout their lifetimes. Vinculin is critical for transmitting these forces, yet how it achieves its distinct functions at cell–cell and cell–matrix adhesions remains unanswered. Here, we show vinculin is phosphorylated at Y822 in cell–cell, but not cell–matrix, adhesions. Phosphorylation at Y822 was elevated when forces were applied to E-cadherin and was required for vinculin to integrate into the cadherin complex. The mutation Y822F ablated these activities and prevented cells from stiffening in response to forces on E-cadherin. In contrast, Y822 phosphorylation was not required for vinculin functions in cell–matrix adhesions, including integrin-induced cell stiffening. Finally, forces applied to E-cadherin activated Abelson (Abl) tyrosine kinase to phosphorylate vinculin; Abl inhibition mimicked the loss of vinculin phosphorylation. These data reveal an unexpected regulatory mechanism in which vinculin Y822 phosphorylation determines whether cadherins transmit force and provides a paradigm for how a shared component of adhesions can produce biologically distinct functions

    Dynamics of the Actin Cytoskeleton at Adhesion Complexes

    No full text
    The shape of cells is altered to allow cells to adapt to their changing environments, including responding to internally generated and externally applied force. Force is sensed by cell surface adhesion proteins that are enriched in sites where cells bind to the extracellular matrix (focal adhesions) and neighboring cells (cell–cell or adherens junctions). Receptors at these adhesion sites stimulate intracellular signal transduction cascades that culminate in dramatic changes in the actin cytoskeleton. New actin filaments form, and/or new and existing filaments can be cleaved, branched, or bundled. Here, we discuss the actin cytoskeleton and its functions. We will examine the current understanding for how the actin cytoskeleton is tethered to adhesion sites. Finally, we will highlight recent studies describing how the actin cytoskeleton at these adhesion sites is remodeled in response to force
    corecore