23 research outputs found

    Influenza Virus in Human Exhaled Breath: An Observational Study

    Get PDF
    Background: Recent studies suggest that humans exhale fine particles during tidal breathing but little is known of their composition, particularly during infection. Methodology/Principal Findings: We conducted a study of influenza infected patients to characterize influenza virus and particle concentrations in their exhaled breath. Patients presenting with influenza-like-illness, confirmed influenza A or B virus by rapid test, and onset within 3 days were recruited at three clinics in Hong Kong, China. We collected exhaled breath from each subject onto Teflon filters and measured exhaled particle concentrations using an optical particle counter. Filters were analyzed for influenza A and B viruses by quantitative polymerase chain reaction (qPCR). Twelve out of thirteen rapid test positive patients provided exhaled breath filter samples (7 subjects infected with influenza B virus and 5 subjects infected with influenza A virus). We detected influenza virus RNA in the exhaled breath of 4 (33%) subjects-three (60%) of the five patients infected with influenza A virus and one (14%) of the seven infected with influenza B virus. Exhaled influenza virus RNA generation rates ranged from <3.2 to 20 influenza virus RNA particles per minute. Over 87% of particles exhaled were under 1 μm in diameter. Conclusions: These findings regarding influenza virus RNA suggest that influenza virus may be contained in fine particles generated during tidal breathing, and add to the body of literature suggesting that fine particle aerosols may play a role in influenza transmission. © 2008 Fabian et al.published_or_final_versio

    Human Ovarian Tumor Cells Escape γδ T Cell Recognition Partly by Down Regulating Surface Expression of MICA and Limiting Cell Cycle Related Molecules

    Get PDF
    Background: Mechanisms of human Vc2Vd2 T cell-mediated tumor immunity have yet to be fully elucidated. Methods and Findings: At least some tumor cell recognition is mediated by NKG2D-MICA interactions. Herein, by using MTT assay and PI-BrdU co-staining and Western-blot, we show that these Vc2Vd2 T cells can limit the proliferation of ovarian tumor cells by down regulation of apoptosis and cell cycle related molecules in tumor cells. Cell-to-cell contact is critical. cd T cell-resistant, but not susceptible ovarian tumor cells escape cd T cell-mediated immune recognition by up-regulating pErk1/2, thereby decreasing surface MICA levels. Erk1/2 inhibitor pretreatment or incubation prevents this MICA decrease, while up-regulating key cell cycle related molecules such as CDK2, CDK4 and Cyclin D1, as well as apoptosis related molecules making resistant tumor cells now vulnerable to cd T cell-mediated lysis. Conclusion: These findings demonstrate novel effects of cdT cells on ovarian tumor cells

    The dorsal rat flap: a discussion of the model and the salutary effect of cimetidine on flap survival.

    No full text
    Failure of skin flaps remains a significant clinical problem. The dorsal rat flap, a reliable experimental model, was used to test the efficacy of cimetidine in treating a failing flap. Flaps were elevated in 45 rats divided into three equal groups. Group 1 was a saline control group, Group 2 received cimetidine 250 mg/kg three times a day for 7 days postoperatively, and Group 3 received cimetidine for 1 day before surgery, and then as in Group 2. Necrosis was assessed on the seventh postoperative day. Group 2 had 31.1 +/- 1.3 (mean % +/- SEM) necrosis, significantly better than saline control animals (p less than 0.01) and pretreated animals (p less than 0.05). These results suggest the usefulness of cimetidine in ischemic flap surgery
    corecore