616 research outputs found

    Comment on ``Evidence Against Instanton Dominance of Topological Charge Fluctuations in QCD''

    Get PDF
    We comment on the recent paper (hep-lat/0102003) by Horvath, Isgur, McCune, and Thacker, which concludes that the local chiral structure of fermionic eigenmodes is not consistent with instanton dominance. Our calculations, done with an overlap action, suggest the opposite conclusion.Comment: 5 pages, Revtex, 4 postscript figures. COLO-HEP-45

    Non--perturbative tests of the fixed point action for SU(3) gauge theory

    Get PDF
    In this paper (the second of a series) we extend our calculation of a classical fixed point action for lattice SU(3)SU(3) pure gauge theory to include gauge configurations with large fluctuations. The action is parameterized in terms of closed loops of link variables. We construct a few-parameter approximation to the classical FP action which is valid for short correlation lengths. We perform a scaling test of the action by computing the quantity G=Lσ(L)G = L \sqrt{\sigma(L)} where the string tension σ(L)\sigma(L) is measured from the torelon mass ÎŒ=Lσ(L)\mu = L \sigma(L). We measure GG on lattices of fixed physical volume and varying lattice spacing aa (which we define through the deconfinement temperature). While the Wilson action shows scaling violations of about ten per cent, the approximate fixed point action scales within the statistical errors for 1/2≄aTc≄1/6 1/2 \ge aT_c \ge 1/6. Similar behaviour is found for the potential measured in a fixed physical volume.Comment: 28 pages (latex) + 11 figures (Postscript), uuencode

    Instanton classical solutions of SU(3) fixed point actions on open lattices

    Get PDF
    We construct instanton-like classical solutions of the fixed point action of a suitable renormalization group transformation for the SU(3) lattice gauge theory. The problem of the non-existence of one-instantons on a lattice with periodic boundary conditions is circumvented by working on open lattices. We consider instanton solutions for values of the size (0.6-1.9 in lattice units) which are relevant when studying the SU(3) topology on coarse lattices using fixed point actions. We show how these instanton configurations on open lattices can be taken into account when determining a few-couplings parametrization of the fixed point action.Comment: 23 pages, LaTeX, 4 eps figures, epsfig.sty; some comments adde

    Short distance current correlators: Comparing lattice simulations to the instanton liquid

    Get PDF
    Point to point correlators of currents are computed in quenched QCD using a chiral lattice fermion action, the overlap action. I compare correlators made of exact quark propagators with correlators restricted to low (less than 500 MeV) eigenvalue eigenmodes of the Dirac operator. In many cases they show qualitative resemblence (typically at small values of the quark mass and distances larger than 0.4 fm) and they differ qualitatively at larger quark masses or at very short distance. Lattice results are in qualitative agreement (and in the difference of vector and axial vector channels, quantitative agreement) with the expectations of instanton liquid models. The scalar channel shows the effects of a quenched finite volume zero mode artifact, a negative correlator.Comment: 18 pages, Revtex, 11 postscript figures. Some changes. Version to appear in Phys. Rev.

    Perfect Scalars on the Lattice

    Full text link
    We perform renormalization group transformations to construct optimally local perfect lattice actions for free scalar fields of any mass. Their couplings decay exponentially. The spectrum is identical to the continuum spectrum, while thermodynamic quantities have tiny lattice artifacts. To make such actions applicable in simulations, we truncate the couplings to a unit hypercube and observe that spectrum and thermodynamics are still drastically improved compared to the standard lattice action. We show how preconditioning techniques can be applied successfully to this type of action. We also consider a number of variants of the perfect lattice action, such as the use of an anisotropic or triangular lattice, and modifications of the renormalization group transformations motivated by wavelets. Along the way we illuminate the consistent treatment of gauge fields, and we find a new fermionic fixed point action with attractive properties.Comment: 26 pages, 11 figure

    Simple Observables from Fat Link Fermion Actions

    Full text link
    A comparison is made of the (quenched) light hadron spectrum and of simple matrix elements for a hypercubic fermion action (based on a fixed point action) and the clover action, both using fat links, at a lattice spacing a= 0.18 fm. Renormalization constants for the naive and improved vector current and the naive axial current are computed using Ward identities. The renormalization factors are very close to unity, and the spectroscopy of light hadrons and the pseudoscalar and vector decay constants agree well with simulations at smaller lattice spacings (and with experiment).Comment: 22 pages, 12 postscript figures, Revtex plus eps
    • 

    corecore