310 research outputs found
Direct observations of a complex coronal web driving highly structured slow solar wind
The solar wind consists of continuous streams of charged particles that
escape into the heliosphere from the Sun, and is split into fast and slow
components, with the fast wind emerging from the interiors of coronal holes.
Near the ecliptic plane, the fast wind from low-latitude coronal holes is
interspersed with a highly structured slow solar wind, the source regions and
drivers of which are poorly understood. Here we report extreme-ultraviolet
observations that reveal a spatially complex web of magnetized plasma
structures that persistently interact and reconnect in the middle corona.
Coronagraphic white-light images show concurrent emergence of slow wind streams
over these coronal web structures. With advanced global MHD coronal models, we
demonstrate that the observed coronal web is a direct imprint of the magnetic
separatrix web (S-web). By revealing a highly dynamic portion of the S-web, our
observations open a window into important middle-coronal processes that appear
to play a key role in driving the structured slow solar wind.Comment: This version of the article has been accepted for publication, after
peer review but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Record is
available online at: http://dx.doi.org/10.1038/s41550-022-01834-
Propagating waves in polar coronal holes as seen by SUMER and EIS
To study the dynamics of coronal holes and the role of waves in the
acceleration of the solar wind, spectral observations were performed over polar
coronal hole regions with the SUMER spectrometer on SoHO and the EIS
spectrometer on Hinode. Using these observations, we aim to detect the presence
of propagating waves in the corona and to study their properties. The
observations analysed here consist of SUMER spectra of the Ne VIII 770 A line
(T = 0.6 MK) and EIS slot images in the Fe XII 195 A line (T = 1.3 MK). Using
the wavelet technique, we study line radiance oscillations at different heights
from the limb in the polar coronal hole regions. We detect the presence of long
period oscillations with periods of 10 to 30 min in polar coronal holes. The
oscillations have an amplitude of a few percent in radiance and are not
detectable in line-of-sight velocity. From the time distance maps we find
evidence for propagating velocities from 75 km/s (Ne VIII) to 125 km/s (Fe
XII). These velocities are subsonic and roughly in the same ratio as the
respective sound speeds. We interpret the observed propagating oscillations in
terms of slow magneto-acoustic waves. These waves can be important for the
acceleration of the fast solar wind.Comment: 5 pages, 7 figures Accepted as Astronomy and Astrophysics Lette
Significant initial results from the environmental measurements experiment on ATS-6
The Applications Technology Satellite (ATS-6), launched into synchronous orbit on 30 May 1974, carried a set of six particle detectors and a triaxial fluxgate magnetometer. The particle detectors were able to determine the ion and electron distribution functions from 1 to greater than 10 to the 8th power eV. It was found that the magnetic field is weaker and more tilted than predicted by models which neglect internal plasma and that there is a seasonal dependence to the magnitude and tilt. ATS-6 magnetic field measurements showed the effects of field-aligned currents associated with substorms, and large fluxes of field-aligned particles were observed with the particle detectors. Encounters with the plasmasphere revealed the existence of warm plasma with temperatures up to 30 eV. A variety of correlated waves in both the particles and fields were observed: pulsation continuous oscillations, seen predominantly in the plasmasphere bulge; ultralow frequency (ULF) standing waves; ring current proton ULF waves; and low frequency waves that modulate the energetic electrons. In additon, large scale waves on the energetic-ion-trapping boundary were observed, and the intensity of energetic electrons was modulated in association with the passage of sector boundaries of the interplanetary magnetic field
Photo-production of Nucleon Resonances and Nucleon Spin Structure Function in the Resonance Region
The photo-production of nucleon resonances is calculated based on a chiral
constituent quark model including both relativistic corrections H{rel} and
two-body exchange currents, and it is shown that these effects play an
important role. We also calculate the first moment of the nucleon spin
structure function g1 (x,Q^2) in the resonance region, and obtain a
sign-changing point around Q^2 ~ 0.27 {GeV}^2 for the proton.Comment: 23 pages, 5 figure
The Source of Three-minute Magneto-acoustic Oscillations in Coronal Fans
We use images of high spatial, spectral and temporal resolution, obtained
using both ground- and space-based instrumentation, to investigate the coupling
between wave phenomena observed at numerous heights in the solar atmosphere.
Intensity oscillations of 3 minutes are observed to encompass photospheric
umbral dot structures, with power at least three orders-of-magnitude higher
than the surrounding umbra. Simultaneous chromospheric velocity and intensity
time series reveal an 87 \pm 8 degree out-of-phase behavior, implying the
presence of standing modes created as a result of partial wave reflection at
the transition region boundary. An average blue-shifted Doppler velocity of
~1.5 km/s, in addition to a time lag between photospheric and chromospheric
oscillatory phenomena, confirms the presence of upwardly-propagating slow-mode
waves in the lower solar atmosphere. Propagating oscillations in EUV intensity
are detected in simultaneous coronal fan structures, with a periodicity of 172
\pm 17 s and a propagation velocity of 45 \pm 7 km/s. Numerical simulations
reveal that the damping of the magneto-acoustic wave trains is dominated by
thermal conduction. The coronal fans are seen to anchor into the photosphere in
locations where large-amplitude umbral dot oscillations manifest. Derived
kinetic temperature and emission measure time-series display prominent
out-of-phase characteristics, and when combined with the previously established
sub-sonic wave speeds, we conclude that the observed EUV waves are the coronal
counterparts of the upwardly-propagating magneto-acoustic slow-modes detected
in the lower solar atmosphere. Thus, for the first time, we reveal how the
propagation of 3 minute magneto-acoustic waves in solar coronal structures is a
direct result of amplitude enhancements occurring in photospheric umbral dots.Comment: Accepted into ApJ (13 pages and 10 figures
Systematic study of Coulomb distortion effects in exclusive (e,e'p) reactions
A technique to deal with Coulomb electron distortions in the analysis of
(e,e'p) reactions is presented. Thereby, no approximations are made. The
suggested technique relies on a partial-wave expansion of the electron wave
functions and a multipole decomposition of the electron and nuclear current in
momentum space. In that way, we succeed in keeping the computational times
within reasonable limits. This theoretical framework is used to calculate the
quasielastic (e,e'p) reduced cross sections for proton knockout from the
valence shells in O, Ca, Zr and Pb. The
final-state interaction of the ejected proton with the residual nucleus is
treated within an optical potential model. The role of electron distortion on
the extracted spectroscopic factors is discussed.Comment: 45 pages, 10 encapsulated postscript figures, Revtex, uses epsfig.sty
and fancybox.sty, to be published in Physical Review
Automated Coronal Hole Detection using Local Intensity Thresholding Techniques
We identify coronal holes using a histogram-based intensity thresholding
technique and compare their properties to fast solar wind streams at three
different points in the heliosphere. The thresholding technique was tested on
EUV and X-ray images obtained using instruments onboard STEREO, SOHO and
Hinode. The full-disk images were transformed into Lambert equal-area
projection maps and partitioned into a series of overlapping sub-images from
which local histograms were extracted. The histograms were used to determine
the threshold for the low intensity regions, which were then classified as
coronal holes or filaments using magnetograms from the SOHO/MDI. For all three
instruments, the local thresholding algorithm was found to successfully
determine coronal hole boundaries in a consistent manner. Coronal hole
properties extracted using the segmentation algorithm were then compared with
in situ measurements of the solar wind at 1 AU from ACE and STEREO. Our results
indicate that flux tubes rooted in coronal holes expand super-radially within 1
AU and that larger (smaller) coronal holes result in longer (shorter) duration
high-speed solar wind streams
Photo- and Electro-Disintegration of 3He at Threshold and pd Radiative Capture
The present work reports results for: pd radiative capture observables
measured at center-of-mass (c.m.) energies in the range 0--100 keV and at 2 MeV
by the TUNL and Wisconsin groups, respectively; contributions to the
Gerasimov-Drell-Hearn (GDH) integral in 3He from the two- up to the three-body
breakup thresholds, compared to experimental determinations by the TUNL group
in this threshold region; longitudinal, transverse, and interference response
functions measured in inclusive polarized electron scattering off polarized 3He
at excitation energies below the threshold for breakup into ppn, compared to
unpolarized longitudinal and transverse data from the Saskatoon group. The
calculations are based on a realistic Hamiltonian with two- and three-nucleon
interactions and a realistic current operator, including one- and two-body
components. The theoretical predictions obtained by including only one-body
currents are in violent disagreement with data. These differences between
theory and experiment are, to a large extent, removed when two-body currents
are taken into account, although some rather large discrepancies remain in the
c.m. energy range 0--100 keV, particularly for the pd differential cross
section and tensor analyzing power at small angles, and contributions to the
GDH integral. A rather detailed analysis indicates that these discrepancies
have, in large part, a common origin, and can be traced back to an excess
strength obtained in the theoretical calculation of the E1 reduced matrix
element associated with the pd channel having L,S,J=1,1/2,3/2. It is suggested
that this lack of E1 strength observed experimentally might have implications
for the nuclear interaction at very low energies. Finally, the validity of the
long-wavelength approximation for electric dipole transitions is discussed.Comment: 47 pages RevTex file, 10 PostScript figures, submitted to Phys. Rev.
Longitudinal and Transverse Quasi-Elastic Response Functions of Light Nuclei
The He and He longitudinal and transverse response functions are
determined from an analysis of the world data on quasi-elastic inclusive
electron scattering. The corresponding Euclidean response functions are derived
and compared to those calculated with Green's function Monte Carlo methods,
using realistic interactions and currents. Large contributions associated with
two-body currents are found, particularly in the He transverse response, in
agreement with data. The contributions of two-body charge and current operators
in the He, He, and Li response functions are also studied via
sum-rule techniques. A semi-quantitative explanation for the observed
systematics in the excess of transverse quasi-elastic strength, as function of
mass number and momentum transfer, is provided. Finally, a number of model
studies with simplified interactions, currents, and wave functions is carried
out to elucidate the role played, in the full calculation, by tensor
interactions and correlations.Comment: 40 pages, 11 figures, submitted to Phys. Rev.
Inclusive Electron-Nucleus Scattering at Large Momentum Transfer
Inclusive electron scattering is measured with 4.045 GeV incident beam energy
from C, Fe and Au targets. The measured energy transfers and angles correspond
to a kinematic range for Bjorken and momentum transfers from . When analyzed in terms of the y-scaling function the data show
for the first time an approach to scaling for values of the initial nucleon
momenta significantly greater than the nuclear matter Fermi-momentum (i.e. GeV/c).Comment: 5 pages TEX, 5 Postscript figures also available at
http://www.krl.caltech.edu/preprints/OAP.htm
- …