94 research outputs found

    Atomistic Line Graph Neural Network for Improved Materials Property Predictions

    Full text link
    Graph neural networks (GNN) have been shown to provide substantial performance improvements for representing and modeling atomistic materials compared with descriptor-based machine-learning models. While most existing GNN models for atomistic predictions are based on atomic distance information, they do not explicitly incorporate bond angles, which are critical for distinguishing many atomic structures. Furthermore, many material properties are known to be sensitive to slight changes in bond angles. We present an Atomistic Line Graph Neural Network (ALIGNN), a GNN architecture that performs message passing on both the interatomic bond graph and its line graph corresponding to bond angles. We demonstrate that angle information can be explicitly and efficiently included, leading to improved performance on multiple atomistic prediction tasks. We use ALIGNN models for predicting 52 solid-state and molecular properties available in the JARVIS-DFT, Materials project, and QM9 databases. ALIGNN can outperform some previously reported GNN models on atomistic prediction tasks by up to 85 % in accuracy with better or comparable model training speed

    On the redundancy in large material datasets: efficient and robust learning with less data

    Full text link
    Extensive efforts to gather materials data have largely overlooked potential data redundancy. In this study, we present evidence of a significant degree of redundancy across multiple large datasets for various material properties, by revealing that up to 95 % of data can be safely removed from machine learning training with little impact on in-distribution prediction performance. The redundant data is related to over-represented material types and does not mitigate the severe performance degradation on out-of-distribution samples. In addition, we show that uncertainty-based active learning algorithms can construct much smaller but equally informative datasets. We discuss the effectiveness of informative data in improving prediction performance and robustness and provide insights into efficient data acquisition and machine learning training. This work challenges the "bigger is better" mentality and calls for attention to the information richness of materials data rather than a narrow emphasis on data volume.Comment: Main text: 10 pages, 2 tables, 5 figures. Supplemental information: 29 pages, 1 table, 23 figure

    Recent progress in the JARVIS infrastructure for next-generation data-driven materials design

    Full text link
    The Joint Automated Repository for Various Integrated Simulations (JARVIS) infrastructure at the National Institute of Standards and Technology (NIST) is a large-scale collection of curated datasets and tools with more than 80000 materials and millions of properties. JARVIS uses a combination of electronic structure, artificial intelligence (AI), advanced computation and experimental methods to accelerate materials design. Here we report some of the new features that were recently included in the infrastructure such as: 1) doubling the number of materials in the database since its first release, 2) including more accurate electronic structure methods such as Quantum Monte Carlo, 3) including graph neural network-based materials design, 4) development of unified force-field, 5) development of a universal tight-binding model, 6) addition of computer-vision tools for advanced microscopy applications, 7) development of a natural language processing tool for text-generation and analysis, 8) debuting a large-scale benchmarking endeavor, 9) including quantum computing algorithms for solids, 10) integrating several experimental datasets and 11) staging several community engagement and outreach events. New classes of materials, properties, and workflows added to the database include superconductors, two-dimensional (2D) magnets, magnetic topological materials, metal-organic frameworks, defects, and interface systems. The rich and reliable datasets, tools, documentation, and tutorials make JARVIS a unique platform for modern materials design. JARVIS ensures openness of data and tools to enhance reproducibility and transparency and to promote a healthy and collaborative scientific environment

    Accelerating Defect Predictions in Semiconductors Using Graph Neural Networks

    Full text link
    Here, we develop a framework for the prediction and screening of native defects and functional impurities in a chemical space of Group IV, III-V, and II-VI zinc blende (ZB) semiconductors, powered by crystal Graph-based Neural Networks (GNNs) trained on high-throughput density functional theory (DFT) data. Using an innovative approach of sampling partially optimized defect configurations from DFT calculations, we generate one of the largest computational defect datasets to date, containing many types of vacancies, self-interstitials, anti-site substitutions, impurity interstitials and substitutions, as well as some defect complexes. We applied three types of established GNN techniques, namely Crystal Graph Convolutional Neural Network (CGCNN), Materials Graph Network (MEGNET), and Atomistic Line Graph Neural Network (ALIGNN), to rigorously train models for predicting defect formation energy (DFE) in multiple charge states and chemical potential conditions. We find that ALIGNN yields the best DFE predictions with root mean square errors around 0.3 eV, which represents a prediction accuracy of 98 % given the range of values within the dataset, improving significantly on the state-of-the-art. Models are tested for different defect types as well as for defect charge transition levels. We further show that GNN-based defective structure optimization can take us close to DFT-optimized geometries at a fraction of the cost of full DFT. DFT-GNN models enable prediction and screening across thousands of hypothetical defects based on both unoptimized and partially-optimized defective structures, helping identify electronically active defects in technologically-important semiconductors

    Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks

    Full text link
    X-ray diffraction (XRD) data acquisition and analysis is among the most time-consuming steps in the development cycle of novel thin-film materials. We propose a machine-learning-enabled approach to predict crystallographic dimensionality and space group from a limited number of thin-film XRD patterns. We overcome the scarce-data problem intrinsic to novel materials development by coupling a supervised machine learning approach with a model agnostic, physics-informed data augmentation strategy using simulated data from the Inorganic Crystal Structure Database (ICSD) and experimental data. As a test case, 115 thin-film metal halides spanning 3 dimensionalities and 7 space-groups are synthesized and classified. After testing various algorithms, we develop and implement an all convolutional neural network, with cross validated accuracies for dimensionality and space-group classification of 93% and 89%, respectively. We propose average class activation maps, computed from a global average pooling layer, to allow high model interpretability by human experimentalists, elucidating the root causes of misclassification. Finally, we systematically evaluate the maximum XRD pattern step size (data acquisition rate) before loss of predictive accuracy occurs, and determine it to be 0.16{\deg}, which enables an XRD pattern to be obtained and classified in 5.5 minutes or less.Comment: Accepted with minor revisions in npj Computational Materials, Presented in NIPS 2018 Workshop: Machine Learning for Molecules and Material
    • …
    corecore