6,400 research outputs found

    Towards Understanding Astrophysical Effects of Nuclear Symmetry Energy

    Full text link
    Determining the Equation of State (EOS) of dense neutron-rich nuclear matter is a shared goal of both nuclear physics and astrophysics. Except possible phase transitions, the density dependence of nuclear symmetry \esym is the most uncertain part of the EOS of neutron-rich nucleonic matter especially at supra-saturation densities. Much progresses have been made in recent years in predicting the symmetry energy and understanding why it is still very uncertain using various microscopic nuclear many-body theories and phenomenological models. Simultaneously, significant progresses have also been made in probing the symmetry energy in both terrestrial nuclear laboratories and astrophysical observatories. In light of the GW170817 event as well as ongoing or planned nuclear experiments and astrophysical observations probing the EOS of dense neutron-rich matter, we review recent progresses and identify new challenges to the best knowledge we have on several selected topics critical for understanding astrophysical effects of the nuclear symmetry energy.Comment: 77 pages. Invited Review Article, EPJA (2019) in pres

    On the Numerical Stationary Distribution of Overdamped Langevin Equation in Harmonic System

    Full text link
    Efficient numerical algorithm for stochastic differential equation has been an important object in the research of statistical physics and mathematics for a long time. In this paper we study the highly accurate numerical algorithm of the overdamped Langevin equation. In particular, our interest is the behaviour of the numerical schemes for solving the overdamped Langevin equation in the harmonic system. Three algorithms are obtained for overdamped Langevin equation, from the large friction limit of the schemes for underdamped Langevin dynamics. We derive the explicit expression of the stationary distribution of each algorithm by analysing the discrete time trajectory, for both one-dimensional and multi-dimensional cases. The accuracy of the stationary distribution of each algorithm is illustrated by comparing to the exact Boltzmann distribution. Our results demonstrate that, the "BAOA-limit" algorithm generates the exact distribution for the harmonic system in the canonical ensemble, within the stable regime of the time interval. The other algorithms do not produce the exact distribution of the harmonic system.Comment: 19 page

    Color Constant Descriptors Combining Image Derivative Structures

    Get PDF
    Color constant image description is a fundamental problem in many computer vision applications. In this paper, the diagonal-offset model is adopted as reflectance model to get color constant image descriptors. This model makes the descriptors much more robust, and also fits the real world images very well. By introducing 3D moment invariants, this paper contributes to give an illumination independent descriptor generation framework. In detail, 0-, 1- and even higher order color constant descriptors can be generated from such framework. These descriptors can characterize n-order derivative image information. Furthermore, the combination thereof can characterize not only original image but also n-order edge image color information. The experiments on real image databases show that all these descriptors are robust to illumination variation and affine transformation, and perform very well for object recognition under various situations

    Constraints on the symmetry energy from observational probes of the neutron star crust

    Full text link
    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy LL of such models, and constraints extracted on LL from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust, (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer, (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden re-coupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning, (iv) The frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations, (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary, and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger.Comment: 19 pages, 10 figure and 1 tabl

    Imprints of the nuclear symmetry energy on gravitational waves from the axial w-modes of neutron stars

    Full text link
    The eigen-frequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an Equation of State (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy Esym(ρ)E_{sym}(\rho) affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigen-frequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the wIIw_{II}-mode is found to exist only for neutron stars having a compactness of M/R0.1078M/R\geq 0.1078 independent of the EOS used.Comment: Version appeared in Phys. Rev. C80, 025801 (2009
    corecore