18 research outputs found

    Initial Results of Quality of Life (QOL) Questionnaire During Randomized AF Suppression Pacing (ON-OFF) From the Low Septal Wall.

    No full text

    Pentacene devices and logic gates fabricated by organic vapor phase deposition

    No full text
    An organic vapor phase deposition (OVPD) tool has been developed and optimized for the deposition of pentacene thin films. Pentacene is grown with a good thickness uniformity, a good material consumption efficiency, and deposition rates up to 9.5 A/s. Top-contact transistors based on OVPD-grown pentacene show high mobilities (up to 1.35 cm(2)/V s) and excellent characteristics, even at high deposition rates. Elementary circuit blocks have also been produced using an OVPD-deposited pentacene film. A five-stage ring oscillator features a stage delay of 2.7 mu s at a supply voltage of 22 V. (c) 2006 American Institute of Physics

    RNA Profiling in Human and Murine Transplanted Hearts: Identification and Validation of Therapeutic Targets for Acute Cardiac and Renal Allograft Rejection

    No full text
    Acute cellular rejection (ACR) is the adverse response of the recipient's immune system against the allogeneic graft. Using human surveillance endomyocardial biopsies (EMBs) manifesting ACR and murine allogeneic grafts, we profiled implicated microRNAs (miRs) and mRNAs. MiR profiling showed that miR‐21, ‐142‐3p, ‐142‐5p, ‐146a, ‐146b, ‐155, ‐222, ‐223, and ‐494 increased during ACR in humans and mice, whereas miR‐149‐5p decreased. mRNA profiling revealed 70 common differentially regulated transcripts, all involved in immune signaling and immune‐related diseases. Interestingly, 33 of 70 transcripts function downstream of IL‐6 and its transcription factor spleen focus forming virus proviral integration oncogene (SPI1), an established target of miR‐155, the most upregulated miR in human EMBs manifesting rejection. In a mouse model of cardiac transplantation, miR‐155 absence and pharmacological inhibition attenuated ACR, demonstrating the causal involvement and therapeutic potential of miRs. Finally, we corroborated our miR signature in acute cellular renal allograft rejection, suggesting a nonorgan specific signature of acute rejection. We concluded that miR and mRNA profiling in human and murine ACR revealed the shared significant dysregulation of immune genes. Inflammatory miRs, for example miR‐155, and transcripts, in particular those related to the IL‐6 pathway, are promising therapeutic targets to prevent acute allograft rejection

    Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRIII+ innate immune cells in rejection

    No full text
    Abstract Rejection remains the main cause of premature graft loss after kidney transplantation, despite the use of potent immunosuppression. This highlights the need to better understand the composition and the cell-to-cell interactions of the alloreactive inflammatory infiltrate. Here, we performed droplet-based single-cell RNA sequencing of 35,152 transcriptomes from 16 kidney transplant biopsies with varying phenotypes and severities of rejection and without rejection, and identified cell-type specific gene expression signatures for deconvolution of bulk tissue. A specific association was identified between recipient-derived FCGR3A+ monocytes, FCGR3A + NK cells and the severity of intragraft inflammation. Activated FCGR3A+ monocytes overexpressed CD47 and LILR genes and increased paracrine signaling pathways promoting T cell infiltration. FCGR3A + NK cells overexpressed FCRL3, suggesting that antibody-dependent cytotoxicity is a central mechanism of NK-cell mediated graft injury. Multiplexed immunofluorescence using 38 markers on 18 independent biopsy slides confirmed this role of FcγRIII+ NK and FcγRIII+ nonclassical monocytes in antibody-mediated rejection, with specificity to the glomerular area. These results highlight the central involvement of innate immune cells in the pathogenesis of allograft rejection and identify several potential therapeutic targets that might improve allograft longevity
    corecore