1,142 research outputs found
Early amniotomy after cervical ripening for induction of labor: a systematic review and meta-analysis of randomized controlled trials
OBJECTIVE DATA:
Timing of artificial rupture of membranes (ie, amniotomy) in induction of labor is controversial, because it has been associated not only with shorter labors, but also with fetal nonreassuring testing, at times necessitating cesarean delivery. The aim of this systematic review and metaanalysis of randomized trials was to evaluate the effectiveness of early amniotomy vs late amniotomy or spontaneous rupture of membranes after cervical ripening.
STUDY:
The search was conducted with the use of electronic databases from inception of each database through February 2019. Review of articles included the abstracts of all references that were retrieved from the search.
STUDY APPRAISAL AND SYNTHESIS METHODS:
Selection criteria included randomized clinical trials that compared early amniotomy vs control (ie, late amniotomy or spontaneous rupture of membranes) after cervical ripening with either Foley catheter or prostaglandins at any dose. The primary outcome was the incidence of cesarean delivery. The summary measures were reported as summary relative risk with 95% of confidence interval with the use of the random effects model of DerSimonian and Laird.
RESULTS:
Four trials that included 1273 women who underwent cervical ripening with either Foley catheter or prostaglandins and then were assigned randomly to either early amniotomy, late amniotomy, or spontaneous rupture of membranes (control subjects) were included in the review. Women who were assigned randomly to early amniotomy had a similar risk of cesarean delivery (31.1% vs 30.9%; relative risk, 1.05; 95% confidence interval, 0.71-1.56) compared with control subjects and had a shorter interval from induction to delivery of approximately 5 hours (mean difference, -4.95 hours; 95% confidence interval, -8.12 to -1.78). Spontaneous vaginal delivery was also reduced in the early amniotomy group, but only 1 of the included trials reported this outcome (67.5% vs 69.1%; relative risk, 0.78; 95% confidence interval, 0.66-0.93). No between-group differences were reported in the other obstetrics or perinatal outcomes.
CONCLUSION:
After cervical ripening, routine early amniotomy does not increase the risk of cesarean delivery and reduces the interval from induction to delivery
Application of Constrained Optimization Techniques in Optimal Shape Design of a Freezer to Dosing Line Splitter for Ice Cream Production
Design of multiple branches splitting of equal mass flow rate in complex rheological flows like ice cream near melting point temperature can be a challenging task. Pulsations in flow rate due to air pumping process and small fluctuations in temperature affecting flow rheology can determine a consistent difference in internal pipe velocity distribution, resulting in a significant difference in the distribution of ice cream dosage. Computational sciences and engineering techniques have allowed a major change in the way products and equipment can be engineered, as a computational model simulating physical processes can be more easily obtained, rather than making prototypes and performing multiple experiments. Among such techniques, optimal shape design (OSD) represents an interesting approach. In OSD, the essential element with respect to classical numerical simulations in fixed geometrical configurations relays on the introduction a certain amount of geometrical degrees of freedom as a part of the unknowns. This implies that the geometry is not completely defined, but part of it is allowed to move dynamically in order to minimize or maximize an objective function. From a mathematical point of view, OSD is a branch of differentiable optimization and more precisely the application of optimal control for distributed systems. OSD is still today numerically difficult to implement, because it relies on a computer intensive activity and moreover because the concept of “optimal” is a compromise between shapes that are good with respect to several criteria. In this work, the applications of a multivariate constrained optimization algorithm is proposed in the case of a mechanical ice cream 1 to 5 splitting system, required to distribute in an evenly way from one freezer into five dosing valves. Results allowed to design a retro-fitting system on an existing production plant reducing the dosing error down to 3% on the average
Occlusion points identification algorithm
In this paper a very simple and efficient algorithm is proposed, to calculate the invisible regions of a
scene, or shadowed side of a body, when it is observed from a pre-set point. This is done by applying a
deterministic numerical procedure to the portion of scene in the field of view, after having been projected
in the observer reference frame. The great advantage of this approach is its generality and suitability for
a wide number of applications. They span from real time renderings, to the simulation of different types
of light sources, such as diffused or collimated, or simply to calculate the effective visible surface for a
camera mounted on board of an aircraft, in order to optimize its trajectory if remote sensing or aerial
mapping task should be carried out. Optimizing the trajectory, by minimizing at any time the occluded
surface, is also a powerful solution for a search and rescue mission, because a wider area in a shorter time
can be observed, particularly in situations where the time is a critical parameter, such as, during a forest
fire or in case of avalanches. For its simplicity of implementation, the algorithm is suitable for real time
applications, providing an extremely accurate solution in a fraction of a millisecond. In this paper, the
algorithm has been tested by calculating the occluded regions of a very complex mountainous scenario,
seen from a gimbal-camera mounted on board of a flying platform
Dynamic origin of chirality transfer between chiral surface and achiral ligand in Au38 clusters
The transfer of chirality between nanomolecules is at the core of several applications in chiral technology such as sensing and catalysis. However, the origin of this phenomenon and how exactly nanoscale objects transfer chirality to molecules in their vicinity remain largely obscure. Here, we show that the transfer of chirality for the intrinsically chiral gold cluster Au38(SR)24 is site dependent; that is, it differs depending on the ligand-binding sites. This is closely related to the dynamic nature of the ligands on the cluster surface. Using a combination of NMR techniques and molecular dynamics simulations, we could assign the four symmetry- unique ligands on the cluster. The study reveals largely different conformational dynamics of the bound ligands, explaining the diverse diastereotopicities observed for the CH2 protons of the ligands. Although chirality is a structural property, our study reveals the importance of dynamics for the transfer of chirality
GLT-1 promoter activity in astrocytes and neurons of mouse hippocampus and somatic sensory cortex
GLT-1 eGFP BAC reporter transgenic adult mice were used to detect GLT-1 gene expression in individual cells of CA1, CA3 and SI, and eGFP fl uorescence was measured to analyze quantitatively GLT-1 promoter activity in different cells of neocortex and hippocampus. Virtually all GFAP+ astrocytes were eGFP+; we also found that about 80% of neurons in CA3 pyramidal layer, 10-70% of neurons in I-VI layers of SI and rare neurons in all strata of CA1 and in strata oriens and radiatum of CA3 were eGFP+. Analysis of eGFP intensity showed that astrocytes had a higher GLT-1 promoter activity in SI than in CA1 and CA3, and that neurons had the highest levels of GLT-1 promoter activity in CA3 stratum pyramidale and in layer VI of SI. Finally, we observed that the intensity of GLT-1 promoter activity in neurons is 1-20% of that measured in astrocytes. These results showed that in the hippocampus and neocortex GLT-1 promoter activity is observed in astrocytes and neurons, detailed the distribution of GLT-1 expressing neurons, and indicated that GLT-1 promoter activity in both astrocytes and neurons varies in different brain regions. © 2010 de Vivo, Melone, Rothstein and Conti
Real-World Outcomes in Patients with Spinal Muscular Atrophy Treated with Onasemnogene Abeparvovec Monotherapy: Findings from the RESTORE Registry
Motor neuron disease; Newborn screening; Spinal muscular atrophyEnfermedad de la neurona motora; Cribado neonatal; Atrofia muscular espinalMalaltia de la neurona motora; Cribratge neonatal; Atròfia muscular espinalBackground:
Long-term, real-world effectiveness and safety data of disease-modifying treatments for spinal muscular atrophy (SMA) are important for assessing outcomes and providing information for a larger number and broader range of SMA patients than included in clinical trials.
Objective:
We sought to describe patients with SMA treated with onasemnogene abeparvovec monotherapy in the real-world setting.
Methods:
RESTORE is a prospective, multicenter, multinational, observational registry that captures data from a variety of sources.
Results:
Recruitment started in September 2018. As of May 23, 2022, data were available for 168 patients treated with onasemnogene abeparvovec monotherapy. Median (IQR) age at initial SMA diagnosis was 1 (0–6) month and at onasemnogene abeparvovec infusion was 3 (1–10) months. Eighty patients (47.6%) had two and 70 (41.7%) had three copies of SMN2, and 98 (58.3%) were identified by newborn screening. Infants identified by newborn screening had a lower age at final assessment (mean age 11.5 months) and greater mean final (SD) CHOP INTEND score (57.0 [10.0] points) compared with clinically diagnosed patients (23.1 months; 52.1 [8.0] points). All patients maintained/achieved motor milestones. 48.5% (n = 81/167) experienced at least one treatment-emergent adverse event (AE), and 31/167 patients (18.6%) experienced at least one serious AE, of which 8/31 were considered treatment-related.
Conclusion:
These real-world outcomes support findings from the interventional trial program and demonstrate effectiveness of onasemnogene abeparvovec over a large patient population, which was consistent with initial clinical data and published 5-year follow-up data. Observed AEs were consistent with the established safety profile of onasemnogene abeparvovec.All financial and material support for this research was provided by Novartis Gene Therapies, Inc
Mathematical model for preoperative identification of obstructed nasal subsites
The planning of experimental studies for evaluation of nasal airflow is particularly challenging given the difficulty in obtaining objective measurements in vivo. Although standard rhinomanometry and acoustic rhinometry are the most widely used diagnostic tools for evaluation of nasal airflow, they provide only a global measurement of nasal dynamics, without temporal or spatial details. Furthermore, the numerical simulation of nasal airflow as computational fluid dynamics technology is not validated. Unfortunately, to date, there are no available diagnostic tools to objectively evaluate the geometry of the nasal cavities and to measure nasal resistance and the degree of nasal obstruction, which is of utmost importance for surgical planning. To overcame these limitations, we developed a mathematical model based on Bernoulli's equation, which allows clinicians to obtain, with the use of a particular direct digital manometry, pressure measurements over time to identify which nasal subsite is obstructed. To the best of our knowledge, this is the first study to identify two limiting curves, one below and one above an average representative curve, describing the time dependence of the gauge pressure inside a single nostril. These upper and lower curves enclosed an area into which the airflow pattern of healthy individuals falls. In our opinion, this model may be useful to study each nasal subsite and to objectively evaluate the geometry and resistances of the nasal cavities, particularly in preoperative planning and follow-up
Combination disease-modifying treatment in spinal muscular atrophy: A proposed classification
Spinal muscular atrophyAtròfia muscular espinalAtrofia muscular espinalWe sought to devise a rational, systematic approach for defining/grouping survival motor neuron-targeted disease-modifying treatment (DMT) scenarios. The proposed classification is primarily based on a two-part differentiation: initial DMT, and persistence/discontinuation of subsequent DMT(s). Treatment categories were identified: monotherapy add-on, transient add-on, combination with onasemnogene abeparvovec, bridging to onasemnogene abeparvovec, and switching to onasemnogene abeparvovec. We validated this approach by applying the classification to the 443 patients currently in the RESTORE registry and explored the demographics of these different groups of patients. This work forms the basis to explore the safety and efficacy profile of the different combinations of DMT in SMA
- …