56,105 research outputs found
Meson decay in a corrected model
Extensively applied to both light and heavy meson decay and standing as one
of the most successful strong decay models is the model, in which
pair production is the dominant mechanism. The pair production can
be obtained from the non-relativistic limit of a microscopic interaction
Hamiltonian involving Dirac quark fields. The evaluation of the decay amplitude
can be performed by a diagrammatic technique for drawing quark lines. In this
paper we use an alternative approach which consists in a mapping technique, the
Fock-Tani formalism, in order to obtain an effective Hamiltonian starting from
same microscopic interaction. An additional effect is manifest in this
formalism associated to the extended nature of mesons: bound-state corrections.
A corrected is obtained and applied, as an example, to
and decays.Comment: 3 figures. To appear in Physical Review
Strong evidences for a nonextensive behavior of the rotation period in Open Clusters
Time-dependent nonextensivity in a stellar astrophysical scenario combines
nonextensive entropic indices derived from the modified Kawaler's
parametrization, and , obtained from rotational velocity distribution. These
's are related through a heuristic single relation given by , where is the cluster age. In a nonextensive
scenario, these indices are quantities that measure the degree of
nonextensivity present in the system. Recent studies reveal that the index
is correlated to the formation rate of high-energy tails present in the
distribution of rotation velocity. On the other hand, the index is
determined by the stellar rotation-age relationship. This depends on the
magnetic field configuration through the expression , where
and denote the saturation level of the star magnetic field and its
topology, respectively. In the present study, we show that the connection
is also consistent with 548 rotation period data for single
main-sequence stars in 11 Open Clusters aged less than 1 Gyr. The value of
2.5 from our unsaturated model shows that the mean magnetic field
topology of these stars is slightly more complex than a purely radial field.
Our results also suggest that stellar rotational braking behavior affects the
degree of anti-correlation between and cluster age . Finally, we suggest
that stellar magnetic braking can be scaled by the entropic index .Comment: 6 pages and 2 figures, accepted to EPL on October 17, 201
Recommended from our members
An Investigation into the Effect of the Shell on SALM Processed Parts
Shell Assisted Layer Manufacturing (SALM) is a novel process for rapid prototyping/
tooling/ manufacture (RP/RT/RM) which is presently undergoing feasibility studies. SALM is
based on layered manufacturing technology (LMT). Initially it develops the shell (boundaries)
of a selected layer using a technique similar to fused deposition modelling (FDM). The
developed shell is filled with a UV curable resin and is exposed to UV radiation for curing.
This procedure is repeated until the complete part is built. This paper compares and contrasts
properties of parts made using two options available with the SALM technique: building the
part using a soluble shell (FDM support structure material, finally dissolved to recover the
part); or using a polymer material such as ABS that is bonded with the resin whilst making
the part.Mechanical Engineerin
A nonextensive insight to the stellar initial mass function
the present paper, we propose that the stellar initial mass distributions as
known as IMF are best fitted by -Weibulls that emerge within nonextensive
statistical mechanics. As a result, we show that the Salpeter's slope of
2.35 is replaced when a -Weibull distribution is used. Our results
point out that the nonextensive entropic index represents a new approach
for understanding the process of the star-forming and evolution of massive
stars.Comment: 5 pages, 2 figures, Accepted to EP
- β¦