3 research outputs found

    Genetic Diversity within Human Erythroviruses: Identification of Three Genotypes

    No full text
    B19 virus is a human virus belonging to the genus Erythrovirus. The genetic diversity among B19 virus isolates has been reported to be very low, with less than 2% nucleotide divergence in the whole genome sequence. We have previously reported the isolation of a human erythrovirus isolate, termed V9, whose sequence was markedly distinct (>11% nucleotide divergence) from that of B19 virus. To date, the V9 isolate remains the unique representative of a new variant in the genus Erythrovirus, and its taxonomic position is unclear. We report here the isolation of 11 V9-related viruses. A prospective study conducted in France between 1999 and 2001 indicates that V9-related viruses actually circulate at a significant frequency (11.4%) along with B19 viruses. Analysis of the nearly full-length genome sequence of one V9-related isolate (D91.1) indicates that the D91.1 sequence clusters together with but is notably distant from the V9 sequence (5.3% divergence) and is distantly related to B19 virus sequences (13.8 to 14.2% divergence). Additional phylogenetic analysis of partial sequences from the V9-related isolates combined with erythrovirus sequences available in GenBank indicates that the erythrovirus group is more diverse than thought previously and can be divided into three well-individualized genotypes, with B19 viruses corresponding to genotype 1 and V9-related viruses being distributed into genotypes 2 and 3

    Immune Reactivity of Human Sera to the Glycoprotein B of Human Herpesvirus 7

    No full text
    The glycoprotein B (gB) is highly conserved among distinct human herpesvirus 7 (HHV-7) strains. Similarly to other herpesvirus glycoproteins, gB has been assumed to induce a specific human immune response. However, it did not appear as an immunodominant protein in conventional immunoblot assays. Recombinant gB, obtained from either Escherichia coli or baculovirus expression systems, did react specifically with HHV-7-seropositive sera, and the main corresponding epitopes were located in its N-terminal part. A 24-amino-acid peptide, corresponding to a predicted hydrophilicity peak and presenting no extensive homology with other betaherpesvirus glycoproteins, was selected in this region at positions 129 to 152 of the gB sequence. When tested by enzyme-linked immunosorbent assay (ELISA), this peptide specifically reacted with HHV-7-seropositive sera. This reactivity was significantly inhibited by the preincubation of sera with the peptide itself, lysates of gB-expressing cells, or lysates of HHV-7-infected cells. The reactivity was not significantly modified when sera were preincubated with lysates of either human cytomegalovirus (HCMV)- or HHV-6-infected cells. In cross-sectional studies including both children and adults, 49 out of 61 serum samples (80%) were found to be positive by HHV-7 ELISA, independent of their reactivity to HCMV. A longitudinal serological study of 17 children during the first 4 years of life showed that the level of ELISA-detected antibodies significantly decreased within a few weeks after birth and then increased in the following months, likely reflecting, respectively, the loss of maternal antibodies and the occurrence of seroconversion. These results demonstrate that gB peptide ELISA might be a useful tool for the serological study of HHV-7 infection
    corecore