148 research outputs found

    Standard and derived Planck quantities: selected analysis and derivations

    Full text link
    We provide an overview of the fundamental units of physical quantities determined naturally by the values of fundamental constants of nature. We discuss a comparison between the 'Planck units', now widely used in theoretical physics and the pre-quantum 'Stoney units' in which, instead of the Planck constant, the charge of the electron is used with very similar quantitative results. We discuss some of the physical motivation for these special units, attributed much after they were introduced, and also put forth a summary of the arguments supporting various cases for making specific physical interpretations of the meanings of some of these units. The new aspects we discuss are a possible physical basis for the Stoney units, their link to the Planck units, and also the importance of Planck units for thermodynamical quantities in the context of quantum gravity.Comment: 22 pages, 1 tabl

    Constraining the Randall-Sundrum modulus in the light of recent PVLAS data

    Full text link
    Recent PVLAS data put stringent constraints on the measurement of birefringence and dichroism of electromagnetic waves travelling in a constant and homogeneous magnetic field. There have been theoretical predictions in favour of such phenomena when appropriate axion-electromagnetic coupling is assumed. Origin of such a coupling can be traced in a low energy string action from the requirement of quantum consistency. The resulting couplings in such models are an artifact of the compactification of the extra dimensions present inevitably in a string scenario. The moduli parameters which encode the compact manifold therefore play a crucial role in determining the axion-photon coupling. In this work we examine the possible bounds on the value of compact modulus that emerge from the experimental limits on the coupling obtained from the PVLAS data. In particular we focus into the Randall-Sundrum (RS) type of warped geometry model whose modulus parameter is already restricted from the requirement of the resolution of gauge hierarchy problem in connection with the mass of the Higgs. We explore the bound on the modulus for a wide range of the axion mass for both the birefringence and the dichroism data in PVLAS. We show that the proposed value of the modulus in the RS scenario can only be accommodated for axion mass \gsim 0.3 eV.Comment: 26 pages, 1 figure, LaTex; added references, typos corrected. Minor changes in the text, a comment added in the Conclusio

    Symmetry aspects of fermions coupled to torsion and electromagnetic fields

    Get PDF
    We study and explore the symmetry properties of fermions coupled to dynamical torsion and electromagnetic fields. The stability of the theory upon radiative corrections as well as the presence of anomalies are investigated.Comment: 9 pages, LaTe

    Fermion Helicity Flip Induced by Torsion Field

    Get PDF
    We show that in theories of gravitation with torsion the helicity of fermion particles is not conserved and we calculate the probability of spin flip, which is related to the anti-symmetric part of affine connection. Some cosmological consequences are discussed.Comment: 6 pages, to appear in Europhysics Letter

    Two-step spacetime deformation induced dynamical torsion

    Full text link
    We extend the geometrical ideas of the spacetime deformations to study the physical foundation of the post-Riemannian geometry. To this aim, we construct the theory of 'two-step spacetime deformation' as a guiding principle. We address the theory of teleparallel gravity and construct a consistent Einstein-Cartan (EC) theory with the 'dynamical torsion'. We show that the equations of the standard EC theory, in which the equation defining torsion is the algebraic type and, in fact, no propagation of torsion is allowed, can be equivalently replaced by the set of 'modified EC equations' in which the torsion, in general, is dynamical. The special physical constraint imposed upon the spacetime deformations yields the short-range propagating spin-spin interaction.Comment: 17 pages, no fifure

    Erratum to: An Entropy Functional for Riemann-Cartan Space-Times

    Full text link
    We correct the entropy functional constructed in Int. J. Theor. Phys. 51:362 (2012). The 'on-shell' functional one obtains from this correct functional possesses a holographic structure without imposing any constraint on the spin-angular momentum tensor of matter, in contrast to the conclusion made in the above paper.Comment: 15 pages. These are the preprints of the original paper and its erratum published in Int. J. Theor. Phy

    Maximal Acceleration Corrections to the Lamb Shift of Hydrogen, Deuterium and He+^{+}

    Get PDF
    The maximal acceleration corrections to the Lamb shift of one--electron atoms are calculated in a non--relativistic approximation. They are compatible with experimental results, are in particularly good agreement with the 2S2P2S-2P Lamb shift in hydrogen and reduce by 50\sim 50% the experiment--theory discrepancy for the 2S2P2S-2P shift in He+He^+.Comment: LaTex file, 15 pages, to be published in Phys. Lett.

    Quantum systems in weak gravitational fields

    Get PDF
    Fully covariant wave equations predict the existence of a class of inertial-gravitational effects that can be tested experimentally. In these equations inertia and gravity appear as external classical fields, but, by conforming to general relativity, provide very valuable information on how Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the International School of Cosmology and Gravitation "Advances in the interplay between quantum and gravity physics" edited by V. De Sabbata and A. Zheltukhin, Kluwer Academic Publishers, Dordrech

    On the exact Foldy-Wouthuysen transformation for a Dirac spinor in torsion and other CPT and Lorentz violating backgrounds

    Full text link
    We discuss the possibility to perform and use the exact Foldy-Wouthuysen transformation (EFWT) for the Dirac spinor coupled to different CPT and Lorentz violating terms. The classification of such terms is performed, selecting those of them which admit EFWT. For the particular example of an axial vector field, which can be associated with the completely antisymmetric torsion, we construct an explicit EFWT in the case when only a timelike component of this axial vector is present. In the cases when EFWT is not possible, one can still use the corresponding technique for deriving the perturbative Foldy-Wouthuysen transformation, as is illustrated in a particular example in the Appendix
    corecore