2,961 research outputs found

    Effects of spin-orbit coupling on the Berezinskii-Kosterlitz-Thouless transition and the vortex-antivortex structure in two-dimensional Fermi gases

    Full text link
    We investigate the Berezinskii-Kosterlitz-Thouless (BKT) transition in a two-dimensional (2D) Fermi gas with spin-orbit coupling (SOC), as a function of the two-body binding energy and a perpendicular Zeeman field. By including a generic form of the SOC, as a function of Rashba and Dresselhaus terms, we study the evolution between the experimentally relevant equal Rashba-Dresselhaus (ERD) case and the Rashba-only (RO) case. We show that in the ERD case, at fixed non-zero Zeeman field, the BKT transition temperature TBKTT_{BKT} is increased by the effect of SOC for all values of the binding energy. We also find a significant increase in the value of the Clogston limit compared to the case without SOC. Furthermore, we demonstrate that the superfluid density tensor becomes anisotropic (except in the RO case), leading to an anisotropic phase-fluctuation action that describes elliptic vortices and antivortices, which become circular in the RO limit. This deformation constitutes an important experimental signature for superfluidity in a 2D Fermi gas with ERD SOC. Finally, we show that the anisotropic sound velocities exhibit anomalies at low temperatures, in the vicinity of quantum phase transitions between topologically distinct uniform superfluid phases.Comment: 5 pages, 3 figure

    Quantum phase transitions and Berezinskii-Kosterlitz-Thouless temperature in a two-dimensional spin-orbit-coupled Fermi gas

    Full text link
    We study the effect of spin-orbit coupling on both the zero-temperature and non-zero temperature behavior of a two-dimensional (2D) Fermi gas. We include a generic combination of Rashba and Dresselhaus terms into the system Hamiltonian, which allows us to study both the experimentally relevant equal-Rashba-Dresselhaus (ERD) limit and the Rashba-only (RO) limit. At zero temperature, we derive the phase diagram as a function of the two-body binding energy and Zeeman field. In the ERD case, this phase diagram reveals several topologically distinct uniform superfluid phases, classified according to the nodal structure of the quasiparticle excitation energies. Furthermore, we use a momentum dependent SU(2)-rotation to transform the system into a generalized helicity basis, revealing that spin-orbit coupling induces a triplet pairing component of the order parameter. At non-zero temperature, we study the Berezinskii-Kosterlitz-Thouless (BKT) phase transition by including phase fluctuations of the order parameter up to second order. We show that the superfluid density becomes anisotropic due to the presence of spin-orbit coupling (except in the RO case). This leads both to elliptic vortices and antivortices, and to anisotropic sound velocities. The latter prove to be sensitive to quantum phase transitions between topologically distinct phases. We show further that at a fixed non-zero Zeeman field, the BKT critical temperature is increased by the presence of ERD spin-orbit coupling. Subsequently, we demonstrate that the Clogston limit becomes infinite: TBKTT_{\rm{BKT}} remains non-zero at all finite values of the Zeeman field. We conclude by extending the quantum phase transition lines to non-zero temperature, using the nodal structure of the quasiparticle spectrum, thus connecting the BKT critical temperature with the zero-temperature results.Comment: 17 pages, 7 figure

    Generation of Superposition States and Charge-Qubit Relaxation Probing in a Circuit

    Full text link
    We demonstrate how a superposition of coherent states can be generated for a microwave field inside a coplanar transmission line coupled to a single superconducting charge qubit, with the addition of a single classical magnetic pulse for chirping of the qubit transition frequency. We show how the qubit dephasing induces decoherence on the field superposition state, and how it can be probed by the qubit charge detection. The character of the charge qubit relaxation process itself is imprinted in the field state decoherence profile.Comment: 6 pages, 4 figure

    Plano de negócios da Associação dos Produtores Rurais em Manejo Florestal e Agricultura: Apruma.

    Get PDF
    projeto; Plano de marketing; Plano operacional; Plano ambiental e social; Estudos econômicos e financeiros; Anexosbitstream/CPAF-AC/15623/1/doc102.pd

    Quantum simulation of the Anderson Hamiltonian with an array of coupled nanoresonators: delocalization and thermalization effects

    Full text link
    The possibility of using nanoelectromechanical systems as a simulation tool for quantum many-body effects is explored. It is demonstrated that an array of electrostatically coupled nanoresonators can effectively simulate the Bose-Hubbard model without interactions, corresponding in the single-phonon regime to the Anderson tight-binding model. Employing a density matrix formalism for the system coupled to a bosonic thermal bath, we study the interplay between disorder and thermalization, focusing on the delocalization process. It is found that the phonon population remains localized for a long time at low enough temperatures; with increasing temperatures the localization is rapidly lost due to thermal pumping of excitations into the array, producing in the equilibrium a fully thermalized system. Finally, we consider a possible experimental design to measure the phonon population in the array by means of a superconducting transmon qubit coupled to individual nanoresonators. We also consider the possibility of using the proposed quantum simulator for realizing continuous-time quantum walks.Comment: Replaced with new improved version. To appear in EPJ Q

    Simulated ecology-driven sympatric speciation

    Full text link
    We introduce a multi-locus genetically acquired phenotype, submitted to mutations and with selective value, in an age-structured model for biological aging. This phenotype describes a single-trait effect of the environment on an individual, and we study the resulting distribution of this trait among the population. In particular, our simulations show that the appearance of a double phenotypic attractor in the ecology induces the emergence of a stable polymorphism, as observed in the Galapagos finches. In the presence of this polymorphism, the simulations generate short-term speciation, when mating preferences are also allowed to suffer mutations and acquire selective value.Comment: 11 pages, 5 figures, 1 table, uses package RevTe

    Ultra-cold fermions in real or fictitious magnetic fields: The BCS-BEC evolution and the type-I--type-II transition

    Full text link
    We study ultra-cold neutral fermion superfluids in the presence of fictitious magnetic fields, as well as charged fermion superfluids in the presence of real magnetic fields. Charged fermion superfluids undergo a phase transition from type-I to type-II superfluidity, where the magnetic properties of the superfluid change from being a perfect diamagnet without vortices to a partial diamagnet with the emergence of the Abrikosov vortex lattice. The transition from type-I to type-II superfluidity is tunned by changing the scattering parameter (interaction) for fixed density. We also find that neutral fermion superfluids such as 6^6Li and 40^{40}K are extreme type-II superfluids, and that they are more robust to the penetration of a fictitious magnetic field in the BCS-BEC crossover region near unitarity, where the critical fictitious magnetic field reaches a maximum as a function of the scattering parameter (interaction).Comment: 4+ pages with 2 figure
    corecore