2,961 research outputs found
Effects of spin-orbit coupling on the Berezinskii-Kosterlitz-Thouless transition and the vortex-antivortex structure in two-dimensional Fermi gases
We investigate the Berezinskii-Kosterlitz-Thouless (BKT) transition in a
two-dimensional (2D) Fermi gas with spin-orbit coupling (SOC), as a function of
the two-body binding energy and a perpendicular Zeeman field. By including a
generic form of the SOC, as a function of Rashba and Dresselhaus terms, we
study the evolution between the experimentally relevant equal
Rashba-Dresselhaus (ERD) case and the Rashba-only (RO) case. We show that in
the ERD case, at fixed non-zero Zeeman field, the BKT transition temperature
is increased by the effect of SOC for all values of the binding
energy. We also find a significant increase in the value of the Clogston limit
compared to the case without SOC. Furthermore, we demonstrate that the
superfluid density tensor becomes anisotropic (except in the RO case), leading
to an anisotropic phase-fluctuation action that describes elliptic vortices and
antivortices, which become circular in the RO limit. This deformation
constitutes an important experimental signature for superfluidity in a 2D Fermi
gas with ERD SOC. Finally, we show that the anisotropic sound velocities
exhibit anomalies at low temperatures, in the vicinity of quantum phase
transitions between topologically distinct uniform superfluid phases.Comment: 5 pages, 3 figure
Quantum phase transitions and Berezinskii-Kosterlitz-Thouless temperature in a two-dimensional spin-orbit-coupled Fermi gas
We study the effect of spin-orbit coupling on both the zero-temperature and
non-zero temperature behavior of a two-dimensional (2D) Fermi gas. We include a
generic combination of Rashba and Dresselhaus terms into the system
Hamiltonian, which allows us to study both the experimentally relevant
equal-Rashba-Dresselhaus (ERD) limit and the Rashba-only (RO) limit. At zero
temperature, we derive the phase diagram as a function of the two-body binding
energy and Zeeman field. In the ERD case, this phase diagram reveals several
topologically distinct uniform superfluid phases, classified according to the
nodal structure of the quasiparticle excitation energies. Furthermore, we use a
momentum dependent SU(2)-rotation to transform the system into a generalized
helicity basis, revealing that spin-orbit coupling induces a triplet pairing
component of the order parameter. At non-zero temperature, we study the
Berezinskii-Kosterlitz-Thouless (BKT) phase transition by including phase
fluctuations of the order parameter up to second order. We show that the
superfluid density becomes anisotropic due to the presence of spin-orbit
coupling (except in the RO case). This leads both to elliptic vortices and
antivortices, and to anisotropic sound velocities. The latter prove to be
sensitive to quantum phase transitions between topologically distinct phases.
We show further that at a fixed non-zero Zeeman field, the BKT critical
temperature is increased by the presence of ERD spin-orbit coupling.
Subsequently, we demonstrate that the Clogston limit becomes infinite:
remains non-zero at all finite values of the Zeeman field. We
conclude by extending the quantum phase transition lines to non-zero
temperature, using the nodal structure of the quasiparticle spectrum, thus
connecting the BKT critical temperature with the zero-temperature results.Comment: 17 pages, 7 figure
Generation of Superposition States and Charge-Qubit Relaxation Probing in a Circuit
We demonstrate how a superposition of coherent states can be generated for a
microwave field inside a coplanar transmission line coupled to a single
superconducting charge qubit, with the addition of a single classical magnetic
pulse for chirping of the qubit transition frequency. We show how the qubit
dephasing induces decoherence on the field superposition state, and how it can
be probed by the qubit charge detection. The character of the charge qubit
relaxation process itself is imprinted in the field state decoherence profile.Comment: 6 pages, 4 figure
Plano de negócios da Associação dos Produtores Rurais em Manejo Florestal e Agricultura: Apruma.
projeto; Plano de marketing; Plano operacional; Plano ambiental e social; Estudos econômicos e financeiros; Anexosbitstream/CPAF-AC/15623/1/doc102.pd
Quantum simulation of the Anderson Hamiltonian with an array of coupled nanoresonators: delocalization and thermalization effects
The possibility of using nanoelectromechanical systems as a simulation tool
for quantum many-body effects is explored. It is demonstrated that an array of
electrostatically coupled nanoresonators can effectively simulate the
Bose-Hubbard model without interactions, corresponding in the single-phonon
regime to the Anderson tight-binding model. Employing a density matrix
formalism for the system coupled to a bosonic thermal bath, we study the
interplay between disorder and thermalization, focusing on the delocalization
process. It is found that the phonon population remains localized for a long
time at low enough temperatures; with increasing temperatures the localization
is rapidly lost due to thermal pumping of excitations into the array, producing
in the equilibrium a fully thermalized system. Finally, we consider a possible
experimental design to measure the phonon population in the array by means of a
superconducting transmon qubit coupled to individual nanoresonators. We also
consider the possibility of using the proposed quantum simulator for realizing
continuous-time quantum walks.Comment: Replaced with new improved version. To appear in EPJ Q
Simulated ecology-driven sympatric speciation
We introduce a multi-locus genetically acquired phenotype, submitted to
mutations and with selective value, in an age-structured model for biological
aging. This phenotype describes a single-trait effect of the environment on an
individual, and we study the resulting distribution of this trait among the
population. In particular, our simulations show that the appearance of a double
phenotypic attractor in the ecology induces the emergence of a stable
polymorphism, as observed in the Galapagos finches. In the presence of this
polymorphism, the simulations generate short-term speciation, when mating
preferences are also allowed to suffer mutations and acquire selective value.Comment: 11 pages, 5 figures, 1 table, uses package RevTe
Ultra-cold fermions in real or fictitious magnetic fields: The BCS-BEC evolution and the type-I--type-II transition
We study ultra-cold neutral fermion superfluids in the presence of fictitious
magnetic fields, as well as charged fermion superfluids in the presence of real
magnetic fields. Charged fermion superfluids undergo a phase transition from
type-I to type-II superfluidity, where the magnetic properties of the
superfluid change from being a perfect diamagnet without vortices to a partial
diamagnet with the emergence of the Abrikosov vortex lattice. The transition
from type-I to type-II superfluidity is tunned by changing the scattering
parameter (interaction) for fixed density. We also find that neutral fermion
superfluids such as Li and K are extreme type-II superfluids, and
that they are more robust to the penetration of a fictitious magnetic field in
the BCS-BEC crossover region near unitarity, where the critical fictitious
magnetic field reaches a maximum as a function of the scattering parameter
(interaction).Comment: 4+ pages with 2 figure
- …