47 research outputs found
A sabre-tooth felid from Coopers Cave (Gauteng, South Africa) and its implications for Megantereon (Felidae: Machairodontinae) taxonomy
Metrical and morphological analysis of a new sabre-tooth felid mandible recovered from the Plio-Pleistocene hominid-bearing site of
Coopers, South Africa, indicates that it can be assigned to the genus Megantereon, though it is by some measures the smallest individual
of this taxon yet described. Comparison of morphological variability within this genus to that found within four extant, medium-sized
felid species (Acinonyx jubatus, Neofelis nebulosa, Panthera pardus and P. uncia) and the extinct genus Smilodon (sister taxon of Megantereon)
provides confirmation of the suggestion by MartĂnez-Navarro&Palmqvist (1995, 1996) that Megantereon is a geographically polymorphic
genus comprised of at least two species: M. cultridens (Cuvier, 1824) of North America and Europe and M. whitei (Broom, 1937) of Africa
and Europe.Duke University’s
Undergraduate Research Support Office, Howard Hughes Program and Department
of Biological Anthropology and Anatomy; the Palaeo-Anthropology Scientific
Trust (PAST); the National Geographic Society; and the Wenner-Gren
Foundation (grant 6914 to D.J.D.
Homo Naledi, A New species of the Genus Homo from the Dinaledi Chamber, South Africa
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa
Early hominin auditory ossicles from South Africa
The middle ear ossicles are only rarely preserved in fossil hominins. Here, we report the discovery of a complete ossicular chain (malleus, incus, and stapes) of Paranthropus robustus as well as additional ear ossicles from Australopithecus africanus. The malleus in both early hominin taxa is clearly human-like in the proportions of the manubrium and corpus, whereas the incus and stapes resemble African and Asian great apes more closely. A deep phylogenetic origin is proposed for the derived malleus morphology, and this may represent one of the earliest human-like features to appear in the fossil record. The anatomical differences found in the early hominin incus and stapes, along with other aspects of the outer, middle, and inner ear, are consistent with the suggestion of different auditory capacities in these early hominin taxa compared with modern humans
Early hominin auditory capacities
Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats
Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa
New fossil remains of Homo naledi from the Lesedi Chamber, South Africa
The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is
the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species
Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa
Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa
Temporal ranges and ancestry in the hominin fossil record: The case of Australopithecus sediba
In attempting to resolve the phylogenetic relationships of fossil taxa, researchers can use evidence from two sources – morphology and known temporal ranges. For most taxa, the available evidence is stronger for one of these data sources. We examined the limitations of temporal data for reconstructing hominin evolutionary relationships, specifically focusing on the hypothesised ancestor–descendant relationship between Australopithecus sediba and the genus Homo. Some have implied that because the only known specimens of A. sediba are dated to later than the earliest fossils attributed to Homo, the former species is precluded from being ancestral to the latter. However, A. sediba is currently known from one site dated to 1.98 Ma and, thus, its actual temporal range is unknown. Using data from the currently known temporal ranges of fossil hominin species, and incorporating dating error in the analysis, we estimate that the average hominin species’ temporal range is ~0.97 Myr, which is lower than most figures suggested for mammalian species generally. Using this conservative figure in a thought experiment in which the Malapa specimens are hypothesised to represent the last appearance date, the middle of the temporal range, and first appearance date for the species, the first appearance date of A. sediba would be 2.95, 2.47 and 1.98 Ma, respectively. As these scenarios are all equally plausible, and 2.95 Ma predates the earliest specimens that some have attributed to Homo, we cannot refute the hypothesis that the species A. sediba is ancestral to our genus based solely on currently available temporal data.
Significance:
We correct a common misconception in palaeoanthropology that a species currently known only from later in time than another species cannot be ancestral to it.
On temporal grounds alone one cannot dismiss the possibility that A. sediba could be ancestral to the genus Homo