3,063 research outputs found

    Sexual violence in post-conflict Liberia: survivors and their care.

    Get PDF
    Using routine data from three clinics offering care to survivors of sexual violence (SV) in Monrovia, Liberia, we describe the characteristics of SV survivors and the pattern of SV and discuss how the current approach could be better adapted to meet survivors' needs. There were 1500 survivors seeking SV care between January 2008 and December 2009. Most survivors were women (98%) and median age was 13 years (Interquartile range: 9-17 years). Sexual aggression occurred during day-to-day activities in 822 (55%) cases and in the survivor's home in 552 (37%) cases. The perpetrator was a known civilian in 1037 (69%) SV events. Only 619 (41%) survivors sought care within 72 h. The current approach could be improved by: effectively addressing the psychosocial needs of child survivors, reaching male survivors, targeting the perpetrators in awareness and advocacy campaigns and reducing delays in seeking care

    The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis

    Get PDF
    Most living organisms developed systems to efficiently time environmental changes. The plant-clock acts in coordination with external signals to generate output responses determining seasonal growth and flowering time. Here, we show that two Arabidopsis thaliana transcription factors, FAR1 RELATED SEQUENCE 7 (FRS7) and FRS12, act as negative regulators of these processes. These proteins accumulate particularly in short-day conditions and interact to form a complex. Loss-of-function of FRS7 and FRS12 results in early flowering plants with overly elongated hypocotyls mainly in short days. We demonstrate by molecular analysis that FRS7 and FRS12 affect these developmental processes in part by binding to the promoters and repressing the expression of GIGANTEA and PHYTOCHROME INTERACTING FACTOR 4 as well as several of their downstream signalling targets. Our data reveal a molecular machinery that controls the photoperiodic regulation of flowering and growth and offer insight into how plants adapt to seasonal changes

    Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.)

    No full text
    KEY MESSAGE: SNPs in candidate genesPain-1,InvCD141(invertases),SSIV(starch synthase),StCDF1(transcription factor),LapN(leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. ABSTRACT: Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker–trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker–trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-016-2665-7) contains supplementary material, which is available to authorized users

    A fully relativistic radial fall

    Full text link
    Radial fall has historically played a momentous role. It is one of the most classical problems, the solutions of which represent the level of understanding of gravitation in a given epoch. A {\it gedankenexperiment} in a modern frame is given by a small body, like a compact star or a solar mass black hole, captured by a supermassive black hole. The mass of the small body itself and the emission of gravitational radiation cause the departure from the geodesic path due to the back-action, that is the self-force. For radial fall, as any other non-adiabatic motion, the instantaneous identity of the radiated energy and the loss of orbital energy cannot be imposed and provide the perturbed trajectory. In the first part of this letter, we present the effects due to the self-force computed on the geodesic trajectory in the background field. Compared to the latter trajectory, in the Regge-Wheeler, harmonic and all others smoothly related gauges, a far observer concludes that the self-force pushes inward (not outward) the falling body, with a strength proportional to the mass of the small body for a given large mass; further, the same observer notes an higher value of the maximal coordinate velocity, this value being reached earlier on during infall. In the second part of this letter, we implement a self-consistent approach for which the trajectory is iteratively corrected by the self-force, this time computed on osculating geodesics. Finally, we compare the motion driven by the self-force without and with self-consistent orbital evolution. Subtle differences are noticeable, even if self-force effects have hardly the time to accumulate in such a short orbit.Comment: To appear in Int. J. Geom. Meth. Mod. Phy

    HS 0139+0559, HS 0229+8016, HS 0506+7725, and HS 0642+5049 : four new long-period cataclysmic variables

    Get PDF
    We present time-resolved optical spectroscopy and photometry of four relatively bright (V ∌ 14.0−15.5) long-period cataclysmic variables(CVs) discovered in the Hamburg Quasar Survey: HS 0139+0559, HS 0229+8016, HS 0506+7725, and HS 0642+5049. Their respective orbital periods, 243.69 ± 0.49 min, 232.550 ± 0.049 min, 212.7 ± 0.2 min, and 225.90 ± 0.23 min are determined from radial velocity and photometric variability studies. HS 0506+7725 is characterised by strong Balmer and He emission lines, short-period (∌10−20 min) flickering, and weak X-ray emission in the ROSAT All Sky Survey. The detection of a deep low state (B 18.5) identifies HS 0506+7725 as a member of the VY Scl stars. HS 0139+0559, HS 0229+8016, and HS 0642+5049 display thick-disc like spectra and no or only weak flickering activity. HS 0139+0559 and HS 0229+8016 exhibit clean quasi-sinusoidal radial velocity variations of their emission lines but no or very little orbital photometricvariability. In contrast, we detect no radial velocity variation in HS 0642+5049 but a noticeable orbital brightness variation. We identify all three systems either as UX UMa-type novalike variables or as Z Cam-type dwarf novae. Our identification of these four new systems underlines that the currently known sample of CVs is rather incomplete even for bright objects. The four new systems add to the clustering of orbital periods in the 3−4 h range found in the sample of HQS selected CVs, and we discuss the large incidence of magnetic CVs and VY Scl/SW Sex stars found in this period range among the known population of CVs

    Type Ib/c supernovae in binary systems I. Evolution and properties of the progenitor stars

    Full text link
    We investigate the evolution of Type Ib/c supernova (SN Ib/c) progenitors in close binary systems, using new evolutionary models that include the effects of rotation, with initial masses of 12 - 25 Msun for the primary components, and of single helium stars with initial masses of 2.8 - 20 Msun. We find that, despite the impact of tidal interaction on the rotation of primary stars, the amount of angular momentum retained in the core at the presupernova stage in different binary model sequences converge to a value similar to those found in previous single star models. This amount is large enough to produce millisecond pulsars, but too small to produce magnetars or long gamma-ray bursts. We employ the most up-to-date estimate for the Wolf-Rayet mass loss rate, and its implications for SN Ib/c progenitors are discussed in detail. In terms of stellar structure, SN Ib/c progenitors in binary systems are predicted to have a wide range of final masses even up to 7 Msun, with helium envelopes of 0.16 - 1.5 Msun. Our results indicate that, if the lack of helium lines in the spectra of SNe Ic were due to small amounts of helium, the distribution of both initial and final masses of SN Ic progenitors should be bimodal. Furthermore, we find that a thin hydrogen layer (0.001 - 0.01 Msun) is expected to be present in many SN Ib progenitors at the presupernova stage. We show that the presence of hydrogen, together with a rather thick helium envelope, can lead to a significant expansion of some SN Ib/c progenitors by the time of supernova explosion. This may have important consequences for the shock break-out and supernova light curve. We also argue that some SN progenitors with thin hydrogen layers produced via Case AB/B transfer might be related to Type IIb supernova progenitors with relatively small radii of about 10 Rsun.Comment: 16 pages, 15 figures, 2 tables, ApJ, in pres

    Brown Dwarfs and the Cataclysmic Variable Period Minimum

    Get PDF
    Using improved, up-to-date stellar input physics tested against observations of low-mass stars and brown dwarfs we calculate the secular evolution of low-mass donor cataclysmic variables (CVs), including those which form with a brown dwarf donor. Our models confirm the mismatch between the calculated minimum period (Pmin ~ 70 min) and the observed short-period cut-off (~ 80 min) in the CV period histogram. We find that tidal and rotational corrections applied to the one-dimensional stellar structure equations have no significant effect on the period minimum. Theoretical period distributions synthesized from our model sequences always show an accumulation of systems at the minimum period, a feature absent from the observed distribution. We suggest that non-magnetic CVs become unobservable as they are effectively trapped in permanent quiescence before they reach Pmin, and that small-number statistics may hide the period spike for magnetic CVs.Comment: 10 pages; accepted for publication in MNRA
    • 

    corecore